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Artificial Neural Networks (ANNs) are well known for oscillatory out-
put when in a closed loop with the feedback from the system it is control-
ling. Here we propose a new neural controller for locomotion in linear 
modular robotic configurations, based on oscillatory output from simple 
ANNs. We investigate two different methods for controlling the action of 
each module based on the neural output, and also evolve neural controllers 
which have the ability to overcome external perturbations. We use a stan-
dard Genetic Algorithm (GA) for optimizing the synaptic weights of the 
ANN. 

1 Introduction 

In the past decade, research in the field of modular robotics has seen a 
rise. Experimental results in using such systems for dull, dirty and danger-
ous operations have been encouraging. With self reconfiguration capabili-
ties, modular robots promise to be operable in unforeseen environments 
and terrains. Locomotion is one of the primary features for such a system 
to be able to function efficiently. 

CEBOT (Fukuda, 1988), (Fukuda, 1990) by Fukuda et al. is one of the 
earliest demonstration of a modular robotic system. Here the authors dem-
onstrate locomotion in modular robots through self-reconfiguration of in-



 

 

dividual modules, where each 
ly. PolyBot (Yim, 1994) by Mark Yim is a classical example of chain a
chitecture reconfigurable modular robots, which has demonstrated many 
modes of locomotion including walking, crawling, rolling, climbing, etc.

We proceed by class
tion 3 we explain the robotic platform on which the experiments are based. 
Section 4 contains experiments and results, and we finish the paper by 
providing concluding remarks and future work in section 5.

2 Locomotion controllers for modular robots

Locomotion in general, weather it is a gallop of an horse, or flapping 
wings of a bird, or humanoid bipedal walking, can be seen as repetitive 
and coordinated movements of limbs, which result in the emergence of 
locomotion gaits. And in limbless creatures like snakes, inchworm or c
terpillars, it is the coordinated expansion and contraction of the body mu
cles. Therefore, in essence, locomotion can be seen as coordinated oscill
tion of limbs. Looking at locomotion 
difference in phase between these oscillations can produce the required 
coordination. We proceed by classifying and reviewing different types of 
controllers implemented for locomotion in modular robots.

2.1 Classification 

Figure 1.  (a) A classification of locomotion controllers for modular robots. (b) 
Schematic of a generic oscillation based locomotion controller for modular robots.
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Locomotion controllers for modular robots can be broadly classified into 
inspired controllers. 



 

 

The former come from the industrial robotics domain and it is based on 
inverse kinematic and trajectory generation. These kinds of controllers are 
hard to scale with the increase in the degrees of freedom, and they require 
high computation power. On the contrary the later class of controllers are 
inspired by biological processes. These controllers have been successfully 
implemented on different modular robotic platforms. Based on the method 
used, these controllers can be further sub-classified into Cellular Automo-
ta, Digital Hormone Method, and Oscillation based methods [Figure 1(b)].  
   Lal et al. in (Lal, 2006) have implemented a Cellular Automata model 
for controlling locomotion of a five legged star shaped modular robot, 
where rules are evolved for controlling the actuator of each module, distri-
butedly, based on the state of the module´s actuator and that of its imme-
diate neighboring module´s actuators, in the previous time step. 

Shen et al. have used a biologically inspired method called Digital Hor-
mone Method (Shen, 2000), (Salemi, 2001), (Hou, 2006), for adaptive 
communication of state information between modules, based on which a 
module can decide an action from the gait table, which results in the emer-
gence of locomotion. A particularly interesting aspect of this work is that if 
the configuration of the robotic organism changes during runtime, or if one 
or some modules fail, with adaptive communication, the locomotion gait is 
adapted to suit the change in configuration. Digital Hormones have been 
successfully implemented on two different modular robotic platforms 
called CONRO (Castano, 2002), (Shen, 2002) and Superbot (Salemi, 
2006). 

Gonzalez-Gomez et al. demonstrate in (Gonzalez-Gomez, 2005) how 
simple sinusoidal oscillators can be used on minimal configuration mod-
ular robots with two and three modules for generating locomotion in once 
and two dimensions respectively, and in (Zhang, 2009) they study the lo-
comotion of two different kinds of caterpillar gaits, from a kinematic pers-
pective, and replicate the same on linear configuration modular robots, 
again using simple sinusoidal oscillators. 

In (Sproewitz, 2008) Ijspreet et al. at the Biorobotics Laboratory, EPFL, 
have used Central Pattern Generators (CPG) (Ijspeert, 2008) for producing 
locomotory oscillations on their modular robotic platform called YaMoR 
(Moeckel, 2005), among other modular and non-modular robotic plat-
forms. In (Pouya, 2010) they have tried similar CPGs for producing both 
oscillation and rotation in their second generation modular robotic plat-
form called Roombots. CPGs are specialized neurons found in the spinal 
cord of vertebrate animals which have the capability of producing rhyth-
mic output without rhythmic sensory or central input. The mathematical 



 

 

model of CPGs used for controlling locomotion in modular robots are 
usually one or two CPG neurons per module, which are coupled in differ-
ent ways with CPGs of other modules based on the configuration. CPGs 
were first successfully used on a modular robotic platform by Kamimura et 
al. in (Kamimura, 2003), where they use CPGs to produce oscillations for 
adaptive locomotion on their M-TRAN modular robots. 
   Lal et al. in (Lal, 2007) have implemented an ANN model as a locomo-
tion controller for their brittle star robot. Here each module is modeled as a 
neuron in a fully connected neural network. Neurons sum their weighted 
input stimulus, which is the actuator phase angle that they share locally or 
globally based on their location in the configuration, and use a sinusoidal 
activation function to determine the next step. The authors have used GA 
for evolving optimal synaptic weight vector of the ANN. 

2.2 Proposed neural controller 

We have implemented a fully connected feed-forward MLP ANN model 
with five input neurons, one output neuron, and a single hidden layer with 
five hidden neurons [Figure 2(a)]. We have tried to keep the architecture of 
the ANN simple, as we wanted to focus on how different inputs to the 
ANN would affect its output. 

Each module in a given configuration has its own ANN model whose 
output neuron is connected to the module's actuator, making it a distributed 
controller. Furthermore, all the modules in a given configuration has the 
same ANN architecture, with exactly the same topology and weight vector, 
making it a homogeneous distributed controller [Figure 2(b)]. Although all 
the modules have identical neural model, the difference in their behavior 
emerges based on the difference in the input fed to their respective ANN at 
any given cycle. Following are the details of the neural input layer, 

 
• Input neurons 1-2: These neurons represent the connector informa-
tion of a module. Neurons 1 and 2 represent front and back connectors re-
spectively. These neurons are fed with binary input of either '1' if the cor-
responding connector is connected to another module, or '0' if not. In a 
given configuration, although the inputs to these two neurons may be dif-
ferent among different modules, they remain constant for a particular 
module, throughout its execution, making these two neurons bias nodes. 
• Input neuron 3: This neuron is fed with the current actuator value, 
after being normalized between `-1´ and `+1´. 



 

 

• Input neurons 4
value of other directly connected modules. A '0' if the corresponding side 
is unconnected. Again, these inputs are normalized between `
 

Figure 2. (a) A schematic of the proposed neural architecture. (b) Simulated model 
of a three module configuration with distributed homogeneous neural based co

 
Unlike CPG, which is a neural model as well, that is specifically d

signed for producing oscillatory or rhythmic pattern output, the proposed 
model has the potential to be extend
comotion. With CPGs, if the configuration of the modular robotic orga
ism changes, the coupling of the CPGs have to be changed to adapt to the 
new configuration, which could be a drawback if the controller is expected 
to work on self reconfigurable modular robots. In the proposed model, 
along with the ability to complexify the hidden layer of the architecture, 
we believe we can evolve neural architecture with the ability to control 
locomotion in different modular robotic 

The neural model proposed in (Lal, 2007) is designed to represent every 
module as a neuron, unlike our model where each module has a complete 
ANN model. With a single neuron per module, it seems insufficient to 
generate any complex or adapt

3 Robotic platform

The Y1 modules developed by Juan  Gonzalez
Gomez, 2008) is an open source, low cost, flexible and easy to build mo
ular robotic platform, which has been used as a research platform in many 
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Unlike CPG, which is a neural model as well, that is specifically de-
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comotion. With CPGs, if the configuration of the modular robotic organ-
ism changes, the coupling of the CPGs have to be changed to adapt to the 
new configuration, which could be a drawback if the controller is expected 
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different work (Gonzalez
2011). We have implemented our proposed neural model on the simulated 
Y1 modules in OpenRAVE (Diankov, 2010), which is an open
Open Dynamic Engine based robotics simulator, along with OpenMR, a 
modular robotics plug
Neural Network library called Flood (Lopez, 2010) for implementing the 
ANN model for the neural controller.

 

Fig. 3. (a) The Y1 family of modules. (b) A three module linear configuration. (
Dr. Juan Gonzalez-Gomez and Avinash Ranganath with a 18 module linear conf

guration robot. (d) Simulated model of a three module configuration.
 
The Y1s [Figure 3(a)] are open

a single degree of freedom, with a rotat
mensions of these modules are 72x52x52 mm. The simulated modules are 
kept consistent with the real modules, both structure wise, and with respect 
to actuator features. Each module can be connected with two other mo
ules, one each on opposite sides. We were able to successfully test the 
neural oscillator model on two, three, four and five module linear config
rations, where in each module can actuate in the pitch axis. In this paper, 
we will focus more on the three module conf
methods implemented.
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Y1 modules in OpenRAVE (Diankov, 2010), which is an open-source 
Open Dynamic Engine based robotics simulator, along with OpenMR, a 

dular robotics plug-in for OpenRave. We have used the open source 
Neural Network library called Flood (Lopez, 2010) for implementing the 
ANN model for the neural controller. 

Fig. 3. (a) The Y1 family of modules. (b) A three module linear configuration. (c) 
Gomez and Avinash Ranganath with a 18 module linear confi-

guration robot. (d) Simulated model of a three module configuration. 

The Y1s [Figure 3(a)] are open-ended cube shaped modules, which has 
a single degree of freedom, with a rotation range of 180 degrees. The d
mensions of these modules are 72x52x52 mm. The simulated modules are 
kept consistent with the real modules, both structure wise, and with respect 
to actuator features. Each module can be connected with two other mod-

each on opposite sides. We were able to successfully test the 
neural oscillator model on two, three, four and five module linear configu-
rations, where in each module can actuate in the pitch axis. In this paper, 
we will focus more on the three module configuration to compare different 
methods implemented. 
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4 Experiments and results 

With the above proposed neural controller we hope to achieve locomo-
tory oscillations with some degree of fault tolerance when the robotic or-
ganism faces any external perturbation. For evolving neural controllers 
whose output resulted in stable locomotion gait, we started with a popula-
tion of random individuals, and followed a fairly standard GA approach, 
with Roulette Wheel selection method and Intermediate Recombination 
method for creating new offspring. Table 1 provides the GA parameters 
we employer for evolving our neural controller. 

Table 1. Parameters used for evolving neural controller 

Parameters Value 
Population size 50 
Generations 100 
Crossover percentage 50.00% 
Elite population retained 12.50% 
Mutation rate 1/Size of genome 

4.1 Experiment 1 

Firstly, we wanted to test the validity of the proposed model for produc-
ing locomotory oscillations. So we setup a method in which after ever pre-
determined number of n time steps, inputs were fed to the ANN of each 
module, an output calculated, and the same fed to the respective module's 
actuator, after scaling the output value appropriately to the range of the 
actuator. The number of time steps between consecutive neural actuation 
was predetermined and fixed to a value of 1 second.  

Figure 4, plots the actuator value against time of all the modules of an 
evolved three module configuration. The best performing individual of the 
final generation was able to locomot at a speed of 4.5 cms/sec. And as see 
in figure 4, the neural controller is able to very quickly converge and settle 
into a stable oscillation pattern, and with that into a stable locomotion gait 
within a very short period of time. We were also able to validate the same 
model by evolving two, four and five module linear configurations, which 
produced similar locomotion gait.  



 

 

 
Figure 4.  Plot of the actuator values of a three module configuration with fre-
quency controlled neural actuation. 

 
Figure 5 is a plot of the average frequency of the oscillations, and the 

speed of locomotion achieved by the best performing individual of each 
generation, over the course of evolution. The average frequency remains 
fairly constant throughout the evolution, but the speed of locomotion in-
creases. This is because the rate of neural output is a value that is prede-
termined and fixed. Juan Gonzalez-Gomez in (Gonzalez-Gomez, 2008) 
has shown that different combinations of amplitude, phase, offset and fre-
quency are required for achieving successful linear configuration locomo-
tion gaits on varying terrains. To achieve a model which can adapt the fre-
quency through evolution, we tried the model explained in the next sec-
tion. 

 



 

 

 
Figure 5. Plot of the average oscillation frequency and the locomotion speed of the 
best performing individuals throughout the evolution of the frequency controlled 

neural actuation method. 

4.2 Experiment 2 

To evolve oscillators whose frequency can adapt along the evolutionary 
process, we modified the previous model by actuating a module once it 
had reached its desired angle, which is the ANN output from the previous 
cycle, instead of at fixed intervals. Whether the actuator has reached the 
desired angle or not, was decided based on the satisfaction of either (1) or 
(2), 

����� −  ���� ≤  �                                             (1) 

���� −  ������  ≤  �                                             (2) 

 
Where ���� is the desired actuator angle obtained from the ANN in the 

last cycle, ��� is the angle of the actuator at the current time step. Values �, 
�, and � are constants. 

 
With (1) we check if the current actuator angle lies within a small range 

of –� <  ���� <  �. And with (2) we check if the rate of actuation is al-
ways above a certain threshold defined by �. The values of �, � and � 



 

 

were hand-coded to '3.0', '5.0', and `30` respectively, after a few experi-
mental observations. With (2) we make sure that the neural controller 
would not fall into a deadlock if the actuator is unable to reach the desired 
angle. Figure 6 is the plot of the actuator value of an evolved three module 
individual. The best performing individual in this method was able to 
achieve a speed of over 6 cms/sec. Figure 7 is a plot of the locomotion 
speed achieved by the best performing individual of each generation and 
their corresponding average oscillation frequency, which indicates a direct 
correlation between the speed and frequency. But in fact, higher frequency 
does not always result in faster speed. 

 

 
Figure 6. Plot of the actuator values of a three module configuration with frequen-

cy adaptive neural actuation method. 
 
Figure 8 is a plot of locomotion speed and average oscillation frequency 

of three module configuration from a different evolutionary process, 
evolving a frequency adaptive neural controller, where the initial genera-
tions had relative success with very high frequency, but were over taken by 
individuals with relatively lower frequency, in later generations. Observing 
figure 7 and figure 8 shows that the optimal locomotion speed on flat sur-
face for a three module linear configuration is achieved at a frequency of 
about 1.3Hz to 1.5 Hz. 



 

 

 

 
Figure 7. Plot of the average oscillation frequency and the locomotion speed of the 

best performing individuals throughout the evolution of the frequency adaptive 
neural actuation method. 

 
 

 
Figure 8. Plot of the average oscillation frequency and locomotion speeed of the 

best performing individual of every generation. 



 

 

4.3 Experiment 3 

Along with stable locomotion gait, we wanted to evolve limit cycle be-
havior such that the neural controller would have the ability to overcome 
external perturbations. To achieve this, every individual was evaluated five 
times, starting with random actuator angles for each evaluation run, and 
the final fitness of an individual was calculated as an average of the five 
evaluations. This way, those individuals who had the ability to produce 
similar oscillations on each run, would be consistent in their performance, 
and subsequently survive and reproduce more successfully. 
 

 
Figure 9. Plot of the actuator values of an evolved three module configuration that 

was stimulated with external perturbation. 
 

We were able to test this by evaluating the best performing three module 
individual of the final generation with simulated external perturbation. Per-
turbations were simulated by replacing the output of the ANN with a ran-
dom value, before passing the same to the actuator. Figure 9 contains the 
plot of the actuator value over time of an individual evaluated for 50 simu-
lated seconds. External perturbations were introduced, for all the modules 
in the configuration, at an interval of 25 seconds (At the 3000 mark on X 
axis) for the next 20 consecutive cycles. As could be see, oscillations 



 

 

quickly converge back to their normal pattern (Within 5500 mark on the X 
axis), few cycles after the end of the external perturbation. 

5 Conclusion and future work 

In this preliminary investigation of the proposed neural model for loco-
motion in modular robotics, we have been able to successfully validate the 
model for producing locomotory oscillations in linear configurations, 
along with fault tolerance and limit cycle behavior. An evolved neural con-
troller is able to consistently converge and settle into a stable oscillatory 
pattern, starting from a random actuator start angle, which results in a sta-
ble locomotion gait. We have been able to test out model only on a simula-
tion environment. Going forward, we would like to validate the same on 
the real Y1 modular robots.  

The hidden layer of the ANN in our model contains default architecture. 
We would like to focus on evolving both the topology and the weight of 
the ANN using the NEAT methodology, to both complexify the architec-
ture for adaptive locomotion in different robotic configurations, and to in-
vestigate the minimal neural architecture required for locomotion. 
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