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Artificial Neural Networks (ANNs) are well known fascillatory out-
put when in a closed loop with the feedback from giistem it is control-
ling. Here we propose a new neural controller fozomotion in linear
modular robotic configurations, based on oscilkatoutput from simple
ANNSs. We investigate two different methods for eotling the action of
each module based on the neural output, and atdgesmweural controllers
which have the ability to overcome external peratidns. We use a stan-
dard Genetic Algorithm (GA) for optimizing the syrie weights of the
ANN.

1 Introduction

In the past decade, research in the field of meodwalaotics has seen a
rise. Experimental results in using such systemsl@idl, dirty and danger-
ous operations have been encouraging. With setinfeguration capabili-
ties, modular robots promise to be operable in nesien environments
and terrains. Locomotion is one of the primary deas for such a system
to be able to function efficiently.

CEBOT (Fukuda, 1988), (Fukuda, 1990) by Fukudal.esane of the
earliest demonstration of a modular robotic systdere the authors dem-
onstrate locomotion in modular robots through setienfiguration of in-



dividual modules, where eamodule has the ability to move indeplent-
ly. PolyBot (Yim, 1994) by Mark Yim is a classical examplechain -
chitedure reconfigurable modular robots, which has destrared man
modes of locomotion including walking, crawlinglling, climbing, etc

We proceed by claifying locomotion controllers in section 2, incse
tion 3 we explain the robotic platform on which thgeriments are base
Section 4 contains experiments and results, andinigh the paper b
providing concluding remarks and future work ints®t5.

2 Locomotion controllers for modular robots

Locomotion in general, weather it is a gallop oferse, or flappini
wings of a bird, or humanoid bipedal walking, can deen as repetiti\
and coordinated movements of limbs, which resulth@ emergence «
locomotion gaits. And in limbless creatures likek&sa inchworm or a-
terpillars, it is the coordinated expansion andti@mion of the body rmnrs-
cles. Therefore, in essence, locomotion can be ag@oordinated osca-
tion of limbs. Looking at locomotioas a collection of oscillation, a stee
difference in phase between these oscillations paduce the require
coordination. We proceed by classifying and revievilifferent types o
controllers implemented for locomotion in modulabots

2.1 Classification
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Figure 1. (a) A classification of locomotion caiters for modular robots. (t
Schematic of a generic oscillation based locomatiantroller for modular robot

Locomotion controllers for modular robots can beddly classified int
two groups Figure 1(a)]; classical controllers and -inspired controllers



The former come from the industrial robotics domaird it is based on
inverse kinematic and trajectory generation. THesds of controllers are
hard to scale with the increase in the degreeseeflbm, and they require
high computation power. On the contrary the latass of controllers are
inspired by biological processes. These controlenge been successfully
implemented on different modular robotic platforBased on the method
used, these controllers can be further sub-claskifito Cellular Automo-
ta, Digital Hormone Method, and Oscillation basestmods [Figure 1(b)].

Lal et al. in (Lal, 2006) have implemented al@al Automata model
for controlling locomotion of a five legged staragled modular robot,
where rules are evolved for controlling the actuafoeach module, distri-
butedly, based on the state of the module’s actaaid that of its imme-
diate neighboring module’s actuators, in the prevtime step.

Shen et al. have used a biologically inspired nebitedled Digital Hor-
mone Method (Shen, 2000), (Salemi, 2001), (Hou,6206r adaptive
communication of state information between modubesed on which a
module can decide an action from the gait tablechviesults in the emer-
gence of locomotion. A particularly interesting espof this work is that if
the configuration of the robotic organism changasnd) runtime, or if one
or some modules fail, with adaptive communicatibe, locomotion gait is
adapted to suit the change in configuration. Diditarmones have been
successfully implemented on two different modulabatic platforms
called CONRO (Castano, 2002), (Shen, 2002) and rBapgSalemi,
2006).

Gonzalez-Gomez et al. demonstrate in (Gonzalez-Gp2@05) how
simple sinusoidal oscillators can be used on mihitoafiguration mod-
ular robots with two and three modules for genegatocomotion in once
and two dimensions respectively, and in (Zhang,92@Bey study the lo-
comotion of two different kinds of caterpillar gaifrom a kinematic pers-
pective, and replicate the same on linear configuramodular robots,
again using simple sinusoidal oscillators.

In (Sproewitz, 2008) ljspreet et al. at the Biortit® Laboratory, EPFL,
have used Central Pattern Generators (CPG) (ljs2&08) for producing
locomotory oscillations on their modular roboti@gbrm called YaMoR
(Moeckel, 2005), among other modular and non-moduddotic plat-
forms. In (Pouya, 2010) they have tried similar GHGr producing both
oscillation and rotation in their second generatinodular robotic plat-
form called Roombots. CPGs are specialized neufmunsd in the spinal
cord of vertebrate animals which have the capgbilft producing rhyth-
mic output without rhythmic sensory or central inpthe mathematical



model of CPGs used for controlling locomotion in dular robots are
usually one or two CPG neurons per module, whiehcaupled in differ-
ent ways with CPGs of other modules based on théigtoation. CPGs
were first successfully used on a modular robdatfgrm by Kamimura et
al. in (Kamimura, 2003), where they use CPGs tapce oscillations for
adaptive locomotion on their M-TRAN modular robots.

Lal et al. in (Lal, 2007) have implemented anMIsodel as a locomo-
tion controller for their brittle star robot. Heeach module is modeled as a
neuron in a fully connected neural network. Neursas their weighted
input stimulus, which is the actuator phase angge they share locally or
globally based on their location in the configuratiand use a sinusoidal
activation function to determine the next step. @béhors have used GA
for evolving optimal synaptic weight vector of tA&IN.

2.2 Proposed neural controller

We have implemented a fully connected feed-forwdtd ANN model
with five input neurons, one output neuron, andhgls hidden layer with
five hidden neurons [Figure 2(a)]. We have trietteéep the architecture of
the ANN simple, as we wanted to focus on how d#férinputs to the
ANN would affect its output.

Each module in a given configuration has its ownNAModel whose
output neuron is connected to the module's actuetaking it a distributed
controller. Furthermore, all the modules in a giwemfiguration has the
same ANN architecture, with exactly the same togpkand weight vector,
making it a homogeneous distributed controller (ifgg2(b)]. Although all
the modules have identical neural model, the diffee in their behavior
emerges based on the difference in the input fedeio respective ANN at
any given cycle. Following are the details of tleeiral input layer,

. Input neurons 1-2: These neurons represent theectminforma-
tion of a module. Neurons 1 and 2 represent fradttzack connectors re-
spectively. These neurons are fed with binary irgfwither '1' if the cor-
responding connector is connected to another mpadulé®' if not. In a
given configuration, although the inputs to these heurons may be dif-
ferent among different modules, they remain consfan a particular
module, throughout its execution, making thesenewrons bias nodes.

. Input neuron 3: This neuron is fed with the curractiuator value,
after being normalized between *-1" and "+1".



. Input neurons -5: These neurons are fed with the eatractuato
value of other directly connected modules. A 'Ghé# corresponding sic
is unconnected. Again, these inputs are normalieédeen-1" and “+1".
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Figure 2. (a) A schema’uc of the proposed neurdiitecture. (b) Simulated mod
of a three module configuration with distributed homogenepesral based n-
troller.

Unlike CPG, which is a neural model as well, traspecifically e-
signed for producing oscillatory or rhythmic patteyutput, the propose
model has the potential to be exted for controlling more than jusb-
comotion. With CPGs, if the configuration of the atar robotic orgn-
ism changes, the coupling of the CPGs have to bhaggd to adapt to tt
new configuration, which could be a drawback if toatroller is expecte
to work on self reconfigurable modular robots. In fw®posed mode
along with the ability to complexify the hidden &yof the architecture
we believe we can evolve neural architecture wih &bility to contro
locomotion in different modular robotconfigurations.

The neural model proposed in (Lal, 2007) is desigoerepresent eve
module as a neuron, unlike our model where eachutadths a complet
ANN model. With a single neuron per module, it seeimsufficient tc
generate any complex or adive behavior.

3 Robotic platform

The Y1 modules developed by Juan Gon:-Gomez (Gonzale-
Gomez, 2008) is an open source, low cost, flexdle easy to build nd-
ular robotic platform, which has been used as eareh platform in man



different work (Gmzale-Gomez, 2005), (Zhang, 2009), (Herre&Zafron,
2011). We have implemented our proposed neural hwdée simulate
Y1 modules in OpenRAVE (Diankov, 2010), which is aper-source
Open Dynamic Engine based robotics simulator, alith OpenMR, ¢
modular robotics plu-in for OpenRave. We have used the open sc
Neural Network library called Flood (Lopez, 2010y implementing thi
ANN model for the neural controll

Fig3. (a) The Y1 family of modes. (b) A three@dule linear configurationc)
Dr. Juan Gonzaleomez and Avinash Ranganath with a 18 module lioeai-
guration robot. (d) Simulated model of a three niedwnfiguration

The Y1s [Figure 3(a)] are op-ended cube shaped modules, which
a single degree of freedom, with a rion range of 180 degrees. Thi-
mensions of these modules are 72x52x52 mm. Thelai@umodules ar
kept consistent with the real modules, both stmecwise, and with respe
to actuator features. Each module can be connegtbdiwo other md-
ules, oneeach on opposite sides. We were able to successést the
neural oscillator model on two, three, four anagfiaodule linear confu-
rations, where in each module can actuate in tteh pixis. In this pape
we will focus more on the three module dguration to compare differe|
methods implemente



4 Experiments and results

With the above proposed neural controller we hapachieve locomo-
tory oscillations with some degree of fault tolerarwhen the robotic or-
ganism faces any external perturbation. For evglueural controllers
whose output resulted in stable locomotion gait,steeted with a popula-
tion of random individuals, and followed a fairlfasdard GA approach,
with Roulette Wheel selection method and Intermedigecombination
method for creating new offspring. Table 1 provides GA parameters
we employer for evolving our neural controller.

Table 1. Parameters used for evolving neural cthetro

Parameters Value
Population siz 50
Generations 100
Crossover percentage 50.00%
Elite population retained 12.50%
Mutation rate 1/Size of genome

4.1 Experiment 1

Firstly, we wanted to test the validity of the pogpd model for produc-
ing locomotory oscillations. So we setup a method/ich after ever pre-
determined number of n time steps, inputs weretéethe ANN of each
module, an output calculated, and the same fegadspective module's
actuator, after scaling the output value approgljato the range of the
actuator. The number of time steps between consecnéural actuation
was predetermined and fixed to a value of 1 second.

Figure 4, plots the actuator value against timalbthe modules of an
evolved three module configuration. The best penfog individual of the
final generation was able to locomot at a speedl ®tms/sec. And as see
in figure 4, the neural controller is able to veuickly converge and settle
into a stable oscillation pattern, and with thabia stable locomotion gait
within a very short period of time. We were alstealo validate the same
model by evolving two, four and five module lineamfigurations, which
produced similar locomotion gait.
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Figure 4. Plot of the actuator values of a threedate configuration with fre-
quency controlled neural actuation.

Figure 5 is a plot of the average frequency of dkeillations, and the
speed of locomotion achieved by the best perfornmayvidual of each
generation, over the course of evolution. The ayerfaequency remains
fairly constant throughout the evolution, but theeed of locomotion in-
creases. This is because the rate of neural oiguwalue that is prede-
termined and fixed. Juan Gonzalez-Gomez in (Gomz@lemez, 2008)
has shown that different combinations of amplityatease, offset and fre-
guency are required for achieving successful limeefiguration locomo-
tion gaits on varying terrains. To achieve a madeich can adapt the fre-
quency through evolution, we tried the model exmdiin the next sec-
tion.
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Figure 5. Plot of the average oscillation frequeang the locomotion speed of the
best performing individuals throughout the evolaotad the frequency controlled

neural actuation method.

4.2 Experiment 2

To evolve oscillators whose frequency can adapigatbe evolutionary
process, we modified the previous model by actgatirmodule once it
had reached its desired angle, which is the ANNwufrom the previous
cycle, instead of at fixed intervals. Whether tlotuator has reached the
desired angle or not, was decided based on thefeszion of either (1) or
(),

|9ANN - 9ti| <a €Y
|9ti - 9fi—x| <P (2)

Where6,yy is the desired actuator angle obtained from th&lAlNthe
last cycleg,, is the angle of the actuator at the current tirep.sValuesz,

B, andx are constants.

With (1) we check if the current actuator angle héthin a small range

of —a < 6,yy < a. And with (2) we check if the rate of actuationals
ways above a certain threshold definedgyThe values ofr, § andx



were hand-coded to '3.0', '5.0', and 30" respelgtivafter a few experi-
mental observations. With (2) we make sure that rtkeral controller
would not fall into a deadlock if the actuator isable to reach the desired
angle. Figure 6 is the plot of the actuator valfiaroevolved three module
individual. The best performing individual in thrmethod was able to
achieve a speed of over 6 cms/sec. Figure 7 iotagblthe locomotion
speed achieved by the best performing individuaéaxdh generation and
their corresponding average oscillation frequemdyich indicates a direct
correlation between the speed and frequency. Biagdir higher frequency
does not always result in faster speed.

Angle (Degrees)

Simulat-ion Time
Figure 6. Plot of the actuator values of a threeut® configuration with frequen-
cy adaptive neural actuation method.

Figure 8 is a plot of locomotion speed and avecsgpdlation frequency
of three module configuration from a different exadnary process,
evolving a frequency adaptive neural controllergevehthe initial genera-
tions had relative success with very high frequeboy were over taken by
individuals with relatively lower frequency, in é&atgenerations. Observing
figure 7 and figure 8 shows that the optimal loctiorospeed on flat sur-
face for a three module linear configuration isieeéd at a frequency of
about 1.3Hz to 1.5 Hz.
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Figure 7. Plot of the average oscillation frequeang the locomotion speed of the
best performing individuals throughout the evolatad the frequency adaptive
neural actuation method.
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Figure 8. Plot of the average oscillation frequeanyg locomotion speeed of the
best performing individual of every generation.



4.3 Experiment 3

Along with stable locomotion gait, we wanted to leeolimit cycle be-
havior such that the neural controller would hawe ability to overcome
external perturbations. To achieve this, everyiigial was evaluated five
times, starting with random actuator angles forheacaluation run, and
the final fitness of an individual was calculatesiam average of the five
evaluations. This way, those individuals who had #ility to produce
similar oscillations on each run, would be consiste their performance,
and subsequently survive and reproduce more suatigss
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Figure 9. Plot of the actuator values of an evoltede module configuration that
was stimulated with external perturbation.

We were able to test this by evaluating the besopaing three module
individual of the final generation with simulatexternal perturbation. Per-
turbations were simulated by replacing the outguhe ANN with a ran-
dom value, before passing the same to the actugitgure 9 contains the
plot of the actuator value over time of an indiatlevaluated for 50 simu-
lated seconds. External perturbations were intredufor all the modules
in the configuration, at an interval of 25 seco(isthe 3000 mark on X
axis) for the next 20 consecutive cycles. As colokd see, oscillations



quickly converge back to their normal pattern (WitB500 mark on the X
axis), few cycles after the end of the externatyybation.

5 Conclusion and future work

In this preliminary investigation of the proposegliral model for loco-
motion in modular robotics, we have been able txassfully validate the
model for producing locomotory oscillations in lave configurations,
along with fault tolerance and limit cycle behavian evolved neural con-
troller is able to consistently converge and sdttte a stable oscillatory
pattern, starting from a random actuator startegnghich results in a sta-
ble locomotion gait. We have been able to teshwadel only on a simula-
tion environment. Going forward, we would like talidate the same on
the real Y1 modular robots.

The hidden layer of the ANN in our model contaiesadilt architecture.
We would like to focus on evolving both the topolaand the weight of
the ANN using the NEAT methodology, to both comjfiexhe architec-
ture for adaptive locomotion in different robotienéigurations, and to in-
vestigate the minimal neural architecture requfcedocomotion.
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