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Abstract— By considering locomotion as a set of coordinated
oscillations, a method for generating a wide variety of periodic
linear gait trajectories is proposed. The shape of the generated
trajectory can be defined as a set of features such as symmetry,
skewness, signal width, duality and squareness, along with
amplitude, offset, phase and frequency parameters. Taking pre-
viously proven nonlinear bipedal gait trajectories as reference,
a set of linear approximates are modeled, and is tested on a
simulated humanoid robot. Then, gait trajectories for producing
stable and faster bipedal gait on the same humanoid robot
are learned using Genetic Algorithm, through a bottom-up
approach.

Index Terms— Bipedal gait, Periodic function, Humanoid,
Genetic Algorithm

I. INTRODUCTION

Humanoid locomotion is an ongoing topic in robotics.
Many approaches have been studied. Some make use of
reduced models to obtain the dynamics [4], [15], [3], [8]
while others prefer a distributed mass formulation [10], [16],
[5]. While many of these works are based on Zero Moment
Point (ZMP) controllers, an interesting approach is based on
the Central Pattern Generator (CPG) method. It has been
hypothesized that during animal locomotion, there is a feed-
forward mechanism that activates the muscles using signals
generated by the CPG, which is located in the spinal cord.
The most interesting property of CPG is that it produces a
periodic pattern based on simple oscillations.

CPG based techniques have been successfully imple-
mented in humanoid robots [14], [2]. In [12], a CPG con-
troller is combined with a ZMP controller, to obtain a stable
bipedal gait. In [13], the authors proposed a CPG controller
optimized by Genetic Algorithm (GA). The fitness function
contains terms related to ZMP to ensure the stability. [11]
presents an approach where a CPG controller generates stable
bipedal locomotion trajectories based on human demonstra-
tions.

Several other approaches try to obtain prerecorded data
from human bipedal walking and then transfer the loco-
motion behavior to the robot. Some examples are inverse
optimal control [7], reinforcement learning [9] and gait
parameter adaptation [6].

In this work we propose a linear gait trajectory generator,
which can generate a wide range of linear periodic trajecto-
ries. The shape of the generated trajectory is defined as a set
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of features. In the current work, the trajectories are modeled
based on stable gait trajectories generated using the cart-table
method, by [3].

In the next section, the linear gait trajectory generator
(Triangle/Square Wave), and all its individual features, are
explained. Experimental results are presented in section three
and discussion in sections four. Finally, conclusions are
provided in the fifth section.

II. TRIANGLE/SQUARE WAVE MODEL

Looking at locomotion as a set of coordinated oscillations,
the objective of this work is to develop a general periodic
function, that can produce a wide range of trajectories.

As a starting point, the range of joint trajectories generated
using the cart-table method (Fig. 1 and 2) by [4], [3], which
is tested and stable, is considered. These trajectories are
nonlinear and varied. Taking into account all the different
features of the trajectories, a model that can approximately fit
these trajectories is developed. In the following subsections,
the trajectory of the right hip joint (in the pitch dimension)
is considered as reference, and the process of incrementally
developing a model, one feature at a time, that fits this
trajectory is being explained.

Fig. 1. Joint trajectories of the right hip, knee, ankle and shoulder joints
generated based on the cart-table method.
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Fig. 2. Joint trajectories of the left hip, knee, ankle and shoulder joints
generated based on the cart-table method.

where A (A ∈R) is the amplitude, O (O ∈R) is the offset,
φ (−180 ◦ ≤ φ ≤ 180 ◦) is the phase, p (p≥ 0) is the period
and χ (0 < χ < 1) is the symmetry parameter.

A sawtooth wave function is defined by (1). A triangle
wave function, as a combination of sawtooth wave and
reverse sawtooth wave (−saw(t)), is defined by (2), where
parameter χ defines the symmetry of the resulting trian-
gle wave. If χ = 0.5, then the resulting triangle wave is
symmetric, else if 0 < χ < 0.5 or if 0.5 < χ < 1 then the
resulting triangle wave tends to lean towards sawtooth wave
and reverse sawtooth wave forms, respectively (Fig. 3).

Fig. 3. Triangle waves with χ = 0.5 (red), χ = 0.1 (green) and χ = 0.9
(blue).

The original trajectory and an approximate fit of it based
on the triangle wave function, is as shown in Fig. 4. The
5 parameters, which are hand-tuned, of this approximate fit
are: A= 21.28 ◦, O= 16.08 ◦, φ = 0 ◦, p= 2.56s and χ = 0.2.

Fig. 4. Original trajectory and the triangle wave based approximate fit.

B. Dual Triangle Wave
From Fig. 4, the simplicity of the triangle wave-based

model is quite evident. By tuning the χ parameter, only
one of the two halves, either the top or the bottom half,
of the original signal can be modeled. So, the current model
is extended by considering the two halves independently in
the following way:
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where Ai ∈ {A0,A1} is a pair of amplitudes and χi ∈
{χ0,χ1} is a pair of symmetry parameters.

In (4), the top half of one triangle wave and the bottom
half of another triangle wave (dual triangles), each with inde-
pendent amplitude and symmetry parameters, are combined
together to produce trajectories that have independent halves
(top and bottom). Some example trajectories could be seen
in Fig. 5.

Fig. 5. Triangle waves with asymmetry between the top and bottom halves.

Fig. 6 contains the original trajectory and an approximate
fit based on the dual triangle waves model. The 7 hand-
tuned parameters are: A0 =A1 = 21.28 ◦, O= 16.08 ◦, φ = 0 ◦,
p = 2.56s, χ0 = 0.4 and χ1 = 0.2.

C. Width Modulation
The dual triangle wave-based approximate fits the original

trajectory much closer than the triangle wave model does, but
there still exists a discrepancy between the two. The linear
model is further enhanced by adding the duty cycle feature,
as follows:
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Fig. 6. Original trajectory and the dual triangle wave based approximate
fit.
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where Di(0 < Di ≤ 1) ∈ {D0,D1} is a pair of duty cycle
parameters.

In (5), the width of a sawtooth wave, within a period, is
modulated. If 0 < D0 < 1, then the width of the top half
of the sawtooth wave is shrunk inversely proportional to
the parameter D0. Similarly, parameter D1 determines the
width of the bottom half of the sawtooth wave. In (6),
width-modulated sawtooth and reverse sawtooth waves are
combined together to produce a width-modulated triangle
wave. An example of this is as seen in Fig. 7.

Fig. 7. Triangle waves with duty cycle of 100% (red) and 50% (green).

D. Skewness
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where γi(−1 ≤ γi ≤ 1) ∈ {γ0,γ1} is a pair of skewness
parameters.

The position, over the x-axis (time), of a width-modulated
triangle, within a period, can also be modulated by introduc-
ing the skewness factor into (5) as defined in (7).

Parameter γ0 in (7) determines the position of the upper
width-modulated triangle, on the x-axis. If 0 < γ0 ≤ 1 then
the triangle is positively skewed, else if −1 ≤ γ0 < 0 then
the triangle is negatively skewed, else if γ0 = 0 then the
triangle is not skewed. Similarly, parameter γ1 determines
the skewness of the bottom triangle. The value of the γi
determines the skewness of the triangle, and is only a factor
if the triangle has a modulated width (i.e. if 0 < Di < 1 ). If
the triangle has a duty cycle of 100%, then γi has no effect
on the resulting triangle. An example of this is as seen in
Fig. 8.

Fig. 8. Width-modulated triangle waves with positive skew (red) and
negative skew (green).

The original trajectory in comparison with the approximate
fit generated from the updated model is as seen in Fig. 9.
The 11 hand-tuned parameters are: A0 = A1 = 21.28 ◦, O =
16.08 ◦, φ = 0 ◦, p = 2.56s, χ0 = 0.4, χ1 = 0.35, D0 = 1.0,
D1 = 0.55, γ0 = 0 and γ1 =−1.0 .

Fig. 9. Original trajectory and the approximate fit based on the model with
duty cycle and skewness factors.

E. Squareness

The updated approximation with modulated width and
skewness factors fits the original trajectory much better
compared to the previous model. The linear model is further
enhanced by adding the squareness factor as follows,
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where εi(0 ≤ εi < 1) ∈ {ε0,ε1} is a pair of squareness
parameters.

In (9) εi determines how square or triangular the signal is.
If ε0 = 0 then the upper half is of a perfect triangular shape,
else if 0 < ε0 < 1, then the top part of the upper half of
the signal is clipped, and the signal is resized by increasing
the amplitude parameter in proportion as defined in (8). The
magnitude of the ε0 parameter determines the squareness of
the signal. Similarly, ε1 determines the squareness of the
bottom half of the signal. Some examples are as seen in
Fig. 10.

Fig. 10. Trajectories with triangular (red), semi-triangular (green) and
square wave forms.

The new linear approximate fit, with squareness factor
included, compared to the original signal is as shown in
Fig. 11. The 13 hand-tuned parameters are: A0 = A1 =
21.28 ◦, O = 16.08 ◦, φ = 0 ◦, p = 2.56s, χ0 = 0.4, χ1 = 0.35,
D0 = 1.0, D1 = 0.55, γ0 = 0, γ1 = −1.0, ε0 = 0.1 and
ε1 = 0.05.

Fig. 11. Original trajectory and the approximate fit based on the model
with squareness factor.

Similarly to the right hip joint trajectory, an approximate
linear fit to the original trajectory of right knee joint was
modeled, and is as shown in Fig. 12. The 13 hand-tuned
parameters for this approximate model are: A0 = 28.72 ◦,

A1 =−6.72 ◦, O= 35.02 ◦, φ = 0 ◦, p= 2.56s, χ0 = χ1 = 0.5,
D0 = 0.8, D1 = 1.0, γ0 = γ0 = 0, ε0 = 0.4 and ε1 = 0.95.

Fig. 12. Right knee joint: The original trajectory and an approximate linear
fit.

III. EXPERIMENTAL RESULTS

A. Modeled Controller

Similar to right hip and right knee joints, the remaining 10
joint trajectories (Fig. 1 and 2) are modeled approximately
by hand-tuning the parameters. The resulting trajectories are
tested on the simulated model of the small-sized (60cm) hu-
manoid robot HOAP-3, in an ODE-based physics simulator
OpenRAVE [1].

The robot starts from a stand-still position, where all
the joints are at 0 ◦. Since all 12 joint trajectories oscillate
at a non-zero center amplitude (i.e. O j 6= 0), a sudden
displacement of the joint positions at time t = 0+∆t perturbs
the Center Of Gravity (COG) of the robot, and results in the
robot loosing balance. To overcome this, joint trajectories are
modified to crescendo to full intensity very slowly, using the
following stabilization filter:

y(t) =

{
y(t) t

τ
, if t < τ

y(t), otherwise

where τ > 0 is the stabilization period parameter.
Parameter τ defines the period, starting from time t = 0,

during which the joint trajectory linearly increase in intensity,
starting from the initial joint position of 0 ◦ (Fig. 13). In this
experiment, stabilization period for all the joint controllers
are set to τ j = 30s.

Fig. 13. Joint trajectories generated by Triangle/Square model crescendo
starting from t = 0s.



The modified trajectories, which are pre-generated, are
evaluated on the simulated robot, and 90% of the evaluations
resulted in a stable bipedal walking gait. The hip, knee,
ankle and shoulder joints all start to oscillate slowly, while
increasing in intensity at every time step (∆t = 2ms). At
around t = 15s, the robot starts to take the first couple of very
small steps backwards, as the torso gradually leans forward
at the same time. Then at around t = 20s, the robot takes
a big step forward, compensating for the forward lean, and
within the next 2 to 3 steps, the robot stabilizes its balance,
and enters into a rhythmic cycle. Then, the robot continues to
walk in a stable gait, at an average walking speed of 8cm/s
until the end of the evaluation (a period of 300s). Screen
capture of one gait cycle of the stable gait is as shown in
Fig. 14 1.

Fig. 14. Screen capture of one gait cycle during stable bipedal gait, starting
from top-left and ending at bottom-right, one row at a time.

In the failed evaluations (10%) the robot does usually loose
its balance at around t = 20s, as it tries to enter a stable gait
cycle. Although the reference joint trajectories are the same
for all the evaluations, the robot fails to enter a stable gait
cycle on instances, because of the stochasticity modeled in
the simulation environment, combined with the fact that the
linear trajectories are only an approximate of the original.

B. Learned Controller

The natural next step in the research is to evaluate
the proposed controller by learning the control parameters
through a bottom-up approach, with minimum or no mod-
eling at all. The objective is to learn control parameters
for generating stable bipedal gait on the simulated HOAP-3
robot, with as minimum modeling of the robot as possible.
Genetic Algorithm (GA) is used for optimizing the control
parameters, wherein the speed of locomotion is used as the
fitness function. The HOAP-3 robot has 28 joints in total, of
which only 10 joints, that are relevant for locomotion, are
controlled, while the rest of the joints are maintained at a
constant default position.

To produce a meaningful gait, p, the period parameter,
has to be a common value for all the joints, although

1Video at: http://youtu.be/5FWjN_2mW8s

needing to be optimized. Considering this, the total number
of parameters, including one τ parameter per joint, that needs
to be optimized would be 10×13+ a common p parameter
= 131 parameters, making it a search problem in a 131
dimensional space. To reduce the dimension of the search
space, the following constraints are applied,
• In bipedal walking gait, there exists a

symmetry between the respective joints of
the two legs, such that yRight j(t) = −yLe f t j(t),
and |φRight j − φLe f t j | ≈ 180 ◦, where ∀ j ∈ J,
J = {HipRoll,HipPitch,Knee,AnklePitch,AnkleRoll}.
That is, the joint angles of respective left and right
leg joints, at time t, are opposite of each other along
with an approximate phase difference of 180◦ between
them. Taking advantage of this, the dimension of the
search space can be reduced by a factor of 2 from 131
dimensions to 66 dimensions, by modeling the joint
trajectories of all the joints of one leg based on the
respective joint trajectories of the other leg.

• In bipedal walking gait, there also exists a symmetry
between the shapes of hip roll and ankle roll joint
trajectories of each leg, varying only in amplitude. This
feature can be used to further reduce the search space,
by modeling the ankle roll joint over the hip roll joint,
such that the only parameters needed to be optimized
for the ankle roll joint are the amplitude parameters A0
and A1, further reducing the dimension of the search
space from 66 dimensions down to 55 dimensions.

• Based on the kinematic model of the robot, the range of
some control parameters such as amplitude and offset,
and that of the τ parameter are reduced, resulting
in narrowing the width of the search space. Control
parameters are optimized in the range as presented in
Table I.

TABLE I
RANGE OF CONTROL PARAMETERS USED WHILE OPTIMIZATION

Parameters Minimum Maximum
A0 0◦ 35◦

A1 −10◦ 30◦

O −30◦ 50◦

φ −180◦ 180◦

p 0.6667s 5s
χ0,χ1 0.01 0.99
D0,D1 0.01 1.0
γ0,γ1 −1.0 1.0
ε0,ε1 0 0.99

τ 7s 17s

A standard GA approach is followed, using Roulette
Wheel selection method and Intermediate Recombination
method for reproducing new offspring. Table II contains the
GA parameters employed.

Fig. 15 plots the fitness value of the best candidate and
average fitness of the population at the end of each gener-
ation. At the end of the evolution, the optimized controller
is able to produce a very stable bipedal walking gait, with a
success rate of 100%, at a speed of 14cm/s, compared to the
average speed of 8cm/s achieved by the modeled controller.



TABLE II
GA PARAMETER VALUES USED FOR EVOLUTION

Parameters Value
Population size 200
Genome size 55

Evaluation period 50 seconds
Evolution length 23 generations
Crossover rate 50.0%

Elite population 12.5%
Mutation rate 1/Size of genome

The evolved gait has a low period value of p = 1.37s. The
robot takes small but quick steps, barely lifting the feet off
the ground, which ensures stability, while the low period
value result in faster walking gait. Average step length of the
evolved gait is 3.1cm with a standard deviation of 1.86cm,
while the average step length of the modeled gait is 4.92cm
with a standard deviation of 1.52cm.

Fig. 15. Graph showing the fitness value of best individual and average
fitness value of the population during evolution.

IV. DISCUSSION

The objective of this work is to develop a linear periodic
function that is feature-based, relatively simple and that can
produce a wide range of trajectories for locomotion. As a
first step, the validity of the proposed controller was tested
by creating an approximate of a previously known stable
trajectory. The COG of the robot is not explicitly considered
while modeling the approximate trajectories, but is implicit
since the reference trajectories are modeled based on this
consideration. All 13 parameters of each trajectory generator
are hand-tuned to model the reference trajectories as close
as possible, but a least squares method can be used too as
an alternate. The hand tuned controller was able to produce
a stable bipedal walking gait, validating the viability of the
proposed controller.

Then, as a second step, the control parameters are learned
in a bottom-up approach, based only on the stability and
speed of the resulting gait. GA is used for optimizing
the control parameters, during which, candidate controllers
resulting in the robot falling over at any point during the
evaluation are give a fitness value of 0. This results in
exerting selective pressure towards candidate solutions that
do not fall over, albeit moving very little during the early
part of the evolution. At the end, the evolution process is
able to produce a gait that is very stable, with a success

rate of 100%, and 75% faster than the gait produced by the
trajectories based on the cart-table method, further validating
the viability of the proposed controller.

The proposed model can also be used as an online
controller for producing gaits, both in humanoids and other
legged robots. It can also be used as a lower-level con-
troller within a larger framework, wherein another higher-
level controller could modulate the lower-level controller’s
parameters, based on sensory inputs for maintaining balance,
avoiding obstacles, etc. Since the proposed model is feature-
based, depending on the complexity of the robot and/or the
gait, certain features of the periodic function can either be
turned off or kept at a constant, and thereby reducing the
number of parameters that needs to be tuned. By compro-
mising the feature that dictates the asymmetry factor between
the upper and the lower half of a trajectory, the tunable
parameter count per joint can be dropped from 14 down to
10 parameters.

In the current primary version of the proposed model, al-
though the reference trajectories produced are strictly linear,
the actual trajectory followed by the joints are nonlinear
(Fig. 16). We plan to extend the current model by adding
nonlinear features. Also, we plan to evaluate the feasibility
of the generated trajectories on the real HOAP-3 humanoid
robot in the near future.

The main objective of this work is not only to have a
method for generating simplified models of pre-existing gait
trajectories, but to create a framework through which stable
gait trajectories can be learned from scratch, needing mini-
mum modeling of the robot. Using the proposed controller,
we are able to prove that a stable bipedal walking gait can
be learned through a model-free bottom-up approach. We are
currently working of learning more complex bipedal gaits
by involving force sensors and joint encoders in the fitness
function.

Fig. 16. Reference and actual joint trajectory of the left knee joint, during
stable walk.

V. CONCLUSIONS

A feature-based linear periodic function for producing
gait trajectories is proposed in this paper. Simple sawtooth
waves are combined to form triangle waves, and features
such as symmetry, duality, width, skewness and squareness
are defined to modulate the resulting trajectories. A linear
approximate of a known stable joint trajectory, generated



with the cart-table method, is created and evaluated on the
simulated version of the HOAP-3 humanoid robot. Exper-
imental results of the hand-tuned controller show a 90%
success rate, after joint trajectories are modified by passing
through a stabilization filter. Then the control parameters are
learned through a bottom-up approach using GA, resulting
in a very stable gait that has a success rate of 100% and 75%
faster than the modeled controller.
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