Distributed Control Algorithm for a Multi Cellular
Robot

Avinash Ranganath

Master of Science Artificial Intelligence
School of Informatics
University of Edinburgh

2009

Abstract

The project implements a framework for developimgributed controllers for locomotion and
obstacle avoidance tasks in modular robotic orgasisvhere in the global action of a robotic
organism emerges as a result of local action afiddal modules. The framework is developed
based on the Digital Hormone Method (DHM), proposgdShen et al. (2004), according to
whom, DHM is a way of controlling agents in a mwdggent system, in a distributed fashion,
based on the topological location, environmentaiabdes and local communication. To achieve
this, the underlying framework consists of modules topology mapping and local
communication, distributes sensing and actuatidnghvforms the building blocks using which a
distributed controller is built. The framework hasen tested by implementing locomotion and

obstacle avoidance tasks on three multi cellulbotic organisms, caterpillar, *V’ and scorpion.

Acknowledgement

| would like to thank my supervisors Barbara WeBbHool of Informatics, University of
Edinburgh] and Marc Szymanski [Institute for Pracesntrol and Robotics, University
Karlsruhe], for supporting me throughout the projéevould also like to thank Lutz Winkler
[Institute for Process control and Robotics, UnsigrKarlsruhe], for all the help during the

project.

Declaration

| declare that this thesis was composed by my#wf, the work contained herein is my own
except where explicitly stated otherwise in the,tard that this work has not been submitted for
any other degree or professional qualification pkes specified.

1. Introduction

4. Bibliography

Table of Contents

1.1.SYMBRION Co.
1.2.Module Design
1.3.Simulation
1.4.Configurations

1.5.Digital Hormones Coe

1.6.Topology Mapping C e

1.7.Locomotion
1.8.0bstacle Avoidance

. Implementation 0000000

2.1.Digital Hormone Model

22.MDL2e
2.3.Topology Mapping C e e

2.4.Llocomotiono
2.4.1. Caterpillar
242.NV ..o
2.4.3. Scorpion L.

2.5.0bstacle Avoidance Coe
2.5.1. Caterpillar C o
252V ..o
2.5.3. Scorpion

3.1.Topology Mapping C e e

3.2.0rganismSize
3.3.Locomotion

3.4.0bstacle Avoidance
3.5.FaultTolerant
3.6.Discussion Ce e e

3.7.5ummary00 Co

. Evaluationand Discussion+ ¢ 4 i e e e e e e e e

LDkDoooo\l'Oﬂ

. 10
.10

11

.11
.12
. 15
. 24
. 25
.30
.32

35

39

.40

43

. 43
. 43
. 43
. .45
. 46
A6

. 47

1 Introduction
A self reconfigurable modular robotic system cardbéned as a robotic platform where a robot

is made up of several independent modules and wdoels not have a fixed morphology as it
can reconfigure itself from one shape to anothase on the task at hand and the situation, a
robot can reconfigure itself to perform the giveask Consider locomotion, a robot can
configure itself to match the shape of a snakerdwicthrough narrow passages, or if it is on an
uneven terrain, it could reconfigure to a leggedfiguration, like a quadruped or a biped, to
walk through uneven surface, as it can avoid olegamore easily, or reconfigure into a
ring/track shape to roll through smooth surfaceotirdown slopes, in quicker speeds. Individual
modules, in such systems, are primarily standafoaehines, which have independent sensors,
actuators, and computational and power resourcexh Emodule would have multiple
connectors, through which they can physically cohrie each other to form a single, bigger

robot [an organism].

In such a system, an action performed by the osgarlE.g. Right leg forward in a bipedal
configuration] is made up of temporally coordinatedal actions performed by each individual
module. And combination of such actions resulta imehavior. Since a multi cellular organism,
in a modular robotic system, could be in one of yndifferent configurations at any given point,
the control algorithm should be able to choose kbeal action based on the current
configuration. One approach is to have a centraltroding module [which sends control
instructions to all other modules], with the alyilib detect the change in the configuration, and
accordingly change the controlling approach to thet new configuration. But in such a case,
failure of the central module brings down the entsystem. An alternative is to have a
distributed control approach, where in each modifieoses its own action based on some

conditions.

1.1 SYMBRION
This project is a module under the EU sponsoredare project called SYMBRION (Contract

No: 216342). According to the authors of [1, 2, tBle main goal of this project is to develop
robots that are capable of operating as a larganswad robots as well as building large
organisms for investigating and developing noveh@ples of evolution and adaptation for
symbiotic organisms. Each robot is fully autonomand can act in the environment either alone

or can be physically connected to other robotsuitddba larger organism to solve tasks that it
cannot solve alone. Such an organism will be peidith an internal bus system for sharing
computing power. Additionally, robots can sharectleal power within the organism.
Combining evolutionary principles with swarm belwsi the organism will autonomously
manage their own hardware and software organizatidsecome self-configuring, self-healing,
self-optimizing and self-protecting. Combining tlevantages of swarm robotics and the
advantages from reconfigurable systems, adaptixdy&ble and scalable robotic systems can be
built, which are able to co-evolve and cooperatth wach other without human supervision in

new and unpredictable environmental situations.

In this project | have attempted to construct anfavork for developing a distributed control
algorithm for locomotion and simple obstacle avaoitka task in modular robotics, and | have
tested the same on three different configuratibfdlowed a distributed control approach since

itis,

a) Fault tolerant, as it does not depend on a singldute, so if one or some modules falil,
the robot could exist, even though not fully opienal.

b) Since the modules are homogenous, the computaievell distributed and no single
module has to bear the weight of the entire network

c) No constrain on how big the organism could grow to.

d) All the modules, irrespective of where in the taupl they are located in, can have an
identical controller.

e) No restriction on where each module needs to ltkdariopology, as they are identical in

hardware and software, and have no unique id asgigmthem.

1.2 Module Design
All modules are identical and cube shaped. The/lmdhade up of two ‘U’ [A 3D ‘U’] shaped

parts which are interlocked to form an open enddzeclt has one degree of rotational freedom
with a single motor placed in the center of theecubhas a pair of screw driver wheels which
gives it two degrees of motion, although | havearenade use of wheels in my project. It has

four connectors, a tilt sensor and multiple IR lobdistance sensors.

1.3 Simulation
All experiments of the system are done on a phgsigine based Delta 3D simulator called

Symbricator3D, which is developed as part of thevl BRION project by the researchers at the
Institute for Process control and Robotics [IPRpjuérsity Karlsruhe, Germany. Symbricator3D

is completely developed in C++ and it has threenmpairts to it,

* Robot actor: This represents the physical and gaaakemodel of the robot, like the
robot’s body, sensors and actuators.

* Robot controller: This represents the software thatinning on the robot that controls
the robot in the simulation. This is the part ungiich | develop my framework.

* Simulation component: This controls the simulatiemvironment, like checking the
fitness of all the robots, creating population obats in the environment, and for

providing a user interface for the user to interith the simulation.

The simulation allows three kinds of messagingal@cessage which is sent from one connected
module to another connected module, organism messédmch is sent by one module and
received by all the modules in that configuratiand global message which is sent by one
module and received by all the modules in the samh, irrespective of whether they are
connected or now. | have only used local messagingwy project, as that is one of the

fundamental principal behind DHM.

1.4 Configurations
| have tested the frame work by developing distelducontrol algorithms for three different

configurations, and | have also been able to iategthe three algorithms into one and test it

successfully. I have experimented with the follogvaonfigurations,

1. Caterpillar: - A string of modules connected séyjadhaped like a caterpillar.
2. V:-Two caterpillars joined together at one erithva center module, and with the other
end open, to for a ‘V’ shaped organism.

3. Scorpio: - It's a ‘T’ shaped organism with two arrashead and a tail.

Figure 1: Three configurations.

1.5 Digital Hormones
For the control algorithm | have attempted the @igHormone Method, proposed Blgen et al.

in [4]. According to the authors of [4], in biologyere are different kinds of cells, each
specializing in a specific task, and cells prodacemone which are diffused throughout the
body and is being received by all other cells, dmat being reacted upon only by the designated
type of cells. Applying a similar technique in mutibotic platform, it would eradicate the need
of having unique address for each robot/module. Alsd, in modular robotics, a module can
then be in any position in the topology, such thateceiving a certain kind of digital hormone
[A message], it is being reacted upon by the modieh is currently in that position of the
topology, rather than by a particular module that message was being addressed to. For this, it
is required to build a map of the topology so tkath module knows where in topology it is
located in

1.6 Topology Mapping:
| have implemented a topology mapping algorithmciwlruns throughout the execution of the

program, which constantly sends handshake meskemyggh all of its four connectors to check

if there are any connected modules. On receivihgralshake message, a module would respond
by sending an acknowledgement, confirming its exiseé. This way each module knows what is
connected to each of its connectors, or if anytonnectors are open, and with that it possibly
knows where it is located on a given topology. Ttuslld be called as the Level-0 topology
mapping, i.e. each module know what is connectatdwectly, and there could be at most four
other modules connected to each module. This issofficient to correctly distinguish each
module in each of the three configurations, sovehextended the topology mapping to multi

level, where in each module can know how it is amted to a module which it is not directly
connected to. For example, the end modules in gisco configuration and one of the end
modules in a caterpillar configuration, all of whibave a single module connected to the back
connecter, make them identical modules at Leveb@ping. But these modules need to perform
different action based on which organism they apar of. So to correctly distinguish between
these two types, | need to check how they are ataddo the third module, which is different in

both the configurations, using level-2 mapping.

1.7 Locomotion
Locomotion gait for all three organisms are corediras a combined rule base, in the control

code. This rule base is a look up table that a neodeeds to refer to select a local action based

of the following factors,

a) Location in the topology of the current configuoati
b) Internal state like direction variable, tilt sensmd distance sensor information.

c) What the last action of the parent node was.

Each module receives a message from its parent, wduieh contains the last action of the
parent node, based on which the module choosesxaulites an action from the rule base, then
sends a message to each of its child node, whaurtent action is. This process of passing
action information to other directly connected nodeexplained as Digital Hormone Diffusion
by Shen et al. in [4].

1.8 Obstacle Avoidance
Obstacle avoidance task is designed in a compldistgsibuted fashion, as in, any node which is

in the correct placement in a given configuratidb.gf the end nodes on a caterpillar
configuration] can generate and diffuse ‘Obstadarfél’ hormones, which is reacted upon when

it reaches the right kind of module.

Section 2 explains, in detail, the implementatidntapology mapping, locomotion gait, and
obstacle avoidance. Section 3 talks about the atialuof the system and discuss about further

improvements and a summary.

10

2 Implementation

2.1 Digital Hormone Method:
The digital hormone method as explained in [4§iprocess of generating and diffusing state

and action information, and reacting to the samerwheceived by the designhated module
type(s), for self organization and self coordinatia a multi robotic system. On generating a
hormone, the module generating it, diffuses theesamall its connected modules, which is
further diffused throughout the network throughdlocommunication by other modules. This
kind of communication cannot be called as proragatas it is not guaranteed that all the
modules will receive the same message, as the gesssae being modified along the path. |
have extensively used the hormone generation, sififuand reaction methods for all actions
performed by each module in my project. Hormonesaacollection of data packaged together
and sent from one module to another. Each hormoassage frames have the following

structure,

| Hormone Type ‘ Connector | Hop Count | Hormone Data ‘
Table 1: A hormone message frame prototype

* Hormone Type: - Each hormone type like locomotionnione, obstacle found hormone
and direction hormone have a unique id which heipdistinguishing between different
hormone types by the hormone handling functionh@réceiving node.

» Connector: - This field contains one of the founmectors [Back, Front, Right or Left] of
the diffusing node through which the hormone wast.s€o a receiving module, the
connector field helps in identify how it is connettto the module from which the
message was sent.

* Hop Count: - This field is set to zero by the homaogenerating module, and is
incremented each time when diffused from one motlubmnother. Hop count is used for
multi level topology mapping and for obstacle awaride task in scorpion configuration.
It can also be used for knowing the module coutihéconfigurations which can grow in
size or be divided into segments over time. Modident could be used to control the
speed and direction of the organism.

 Hormone Data: - The content and size of this feiffiers from hormone to hormone.

Hormone data could be made up of one or more fielthe case of locomotion hormone,

11

this field contains the hinge angle and time stidpg step used only by modules in
scorpion configuration] and in case of ‘directidmanoge’ hormone, this field contains the
direction information. In ‘obstacle found’ hormortgijs field contains information as to
on which of the four sides of a module the obstagds found. This field is empty in

‘direction flip’ hormone.

2.2 MDL2e:
The SYMBRION project was active for over a yeardvefl started my work, and so there was

already a programming platform setup and methodesoglefined for me to follow. The
implementation of the project was done on a twelagt programming platform; a lower level
behavior definition written in C++, and a highevde behavioral collaboration done in a XML
based language called as Motion Description Langago Extended [MDL2e]. MDL2e is the
work of Szymanski et al. [5] at the Institute for Process Control and Rasyt Karlsruhe,
Germany. MDL2e is a way of describing the contrigloathm of a robot, in a multi robotic
platform, as a set of behaviors that resembleslaedanguage. The order of such behavioral
units, called as atoms in the context of MDL2e regponds to the chronology of the actions a
robot/module takes. Each atom must have a uniquinidkhe form of a name], which
corresponds to a function pointer of the function the lower level C++ part of the
implementation. The function associated with eaoimagets executed as the control flows from
one atom to another. Along with the name, everymatmas an interrupt and timer value
associated with it. The timer value is the upp®itlias to for how long an atom can execute. An
interrupt is associated with an internal sensovadue of the module, and it has to be true [also
called active] for an atom to be executed. The ttinadue can be set to infinite, meaning that an
atom will be executed for as long as the interegotidition stays true. There are three types of

atoms in MDL2e,

i. Executables: - It corresponds to a single actike ftotate hinge motor to a certain angle,
generate a certain kind of hormone, sleep for gaiceamount of time, read incoming
messages, etc. Executables accept values like angleep time as input argument.

ii. Interrupts: - Returns a true or a false based ocerdain condition defined in the
corresponding function implemented in the loweeldayer. It does not accept any input

arguments.

12

iii. Variables: - Reads a value from a sensor or a biaridike distance sensor, tilt sensor,
direction, etc. and returns the same to the prograntrol. It does not accept any input

arguments.

A set of atoms are tied together in what is cadiédehavior’ and a set of behaviors make up the
control program for a module. A behavior is equivell to a function header in other
programming languages. It has a name, durationrdgadupt field, just as any other atom. The

following example explains a simple behavior,

1 <BEHAVI OUR nane="updat e-connector" interrupt="1FALSE" duration="infinite">

2 <MULT multiplicity="infinite">

3 <ATOM nane=" AUPDATE_CONNECTORS" interrupt="1 TRUE" duration="1"/>

4 </ MULT>

5 </ BEHAVI QUR>

6

7 <BEHAVI OUR name="Push- Fwd" interrupt="EQ VDI RECTION, 1)" duration="infinite">

8 <MULT multiplicity="infinite">

9 <BEHAVI OUR nane="updat e- connector" interrupt="NOT(| GOTHORMONE)" duration="infinite"/>

10

11 <BEHAVI OUR nane="Scor p- Arm St ep- 1- Fwd" i nt errupt =" EQ VDATAFI ELD2, 1) " duration="infinite">
12 <ATOM nane="ADl FFUSE_HORMONE" i nterrupt="1TRUE" duration="1" arg0="0"/>

13 <BEHAVI OUR nane="updat e- connector" interrupt="NOT(| GOTHORMONE)" duration="infinite"/>
14 <ATOM nane="AROTATE_HI NGE" interrupt="I TRUE" duration="2" arg0="0.75" />

15 <ATOM nane="ADlI FFUSE_HORMONE" i nterrupt="1TRUE" duration="1" arg0="0"/>

16 </ BEHAVI OUR>

17

18 <BEHAVI OUR nane="Scor p- Arm St ep- 2- Fwd" i nt errupt =" EQ(VDATAFI ELD2, 2)" duration="infinite">
19 <ATOM nane="ADlI FFUSE_HORMONE" i nterrupt="1TRUE" duration="1" arg0="0"/>

20 <BEHAVI OUR nane="updat e- connector" interrupt="NOT(| GOTHORMONE) " duration="infinite"/>
21 <ATOM nane="AROTATE_HI NGE" interrupt="|1TRUE" duration="2" arg0="-0.75" />

22 <ATOM nane="ADl FFUSE_HORMONE" i nterrupt="1TRUE" duration="1" arg0="0"/>

23 </ BEHAVI OUR>

24 </ MULT>
25</ BEHAVI OUR>

Table 2: MDL2e code snippet.

In the above example, line 1-5 is a template oingpke behavior, which is called in various
places in the control program, like in line 9, 181&0. The duration of this behavior is set to
‘infinite’ during all three calls, meaning that shbehavior will run as long as the interrupt
condition stays true. The interrupt condition iSON(IGOTHORMONE)’, meaning that this
behavior will run until a new hormone is receivéthe function associated with interrupt atom
“IGOTHORMONE?” returns true if there was a new homeanessage received and returns false
otherwise. A behavior can contain sub behaviorglégnshem, as well as make calls to other
behaviors that are declared elsewhere in the Ifilke number 7 and 25 is the start and end,

respectively, of a main behavior called “Push-Fwdhich contains two other sub behaviors

13

called “Scorp-Arm-Step-1-Fwd” and “Scorp-Arm-Steg=-d” at line number 11 and 18

respectively. The following pseudo code explairessMiD2e code in table 2.

1. Execute if direction value == 1 ['1’ indicating Reard and ‘-1’ indicating Reverse]
1.1. Update connectors until a new hormone is received.
1.2.If the Data Field-2 in the recently received hormamequal to 1
1.2.1. Diffuse the last received hormone.
1.2.2. Update connectors until a new hormone is received.
1.2.3. Rotate hinge motor to 0.75 radians.
1.2.4. Diffuse the last received hormone.
1.3.Else if the Data Field-2 in the recently receivedrhone is equal to 2
1.3.1. Diffuse the last received hormone.
1.3.2. Update connectors until a new hormone is received.
1.3.3. Rotate hinge motor to -0.75 radians.
1.3.4. Diffuse the last received hormone.
2. Gotostep 1.

According to Szymanski et al. in [5], there are several advantages of using M®Iar
developing controller for robots in a multi roboptatform. The low level implementation of
atoms can fit into the program memory of a robotlevthe high level behavior code along with
an interpreter can reside on the data memory @rext memory. This way, complex behaviors
can be programmed into robots which are smallze sihd have memory constraints. Also this
facilitates in code exchange between robots dumingime, which could be used in evolutionary
methods, which otherwise would not be possible@s gannot write into the flash memory of
most microcontrollers during the runtime. One distiadvantage of using MDL2e that | noticed
during this project is that | had develop behaviatams at the low level once during the first
half of the project when | was working on the fiosganism [Caterpillar], and to get the next two
organisms up and running all 1 had to do was toifpdtle behavior at the MDL2e level. And
furthermore, for implementing any new behavioratilto develop atoms once in the lower level
and use it straightforward in all the three confadions. So there is a clear advantage of code

reusability by using MDL2e. One disadvantages aigi$/DL2e is that you cannot pass as an

14

argument to an executable atom, the return valom f& variable atom directly at the MDL2e

level.

2.3 Topology Mapping:
As the approach of developing a distributed cdierdor operating modular robots, that’s |

have followed, is based on knowing where in thelogy a module is located in, it is necessary
to develop an algorithm for the same which is bd#aand stable during all situations. | was able

to do it in the following way,

Each module has four connectors, one each on ttie bant, right and left side of the body,
through which it can physically connect to otherdules. | devised a method where in each
module sends out a message [Handshake Messageghheach of its four connectors every few
execution cycle. Similarly, each module will reaeigne message through each side, provided
there is another module connected on to that €dery few execution cycle. This way each
module can know which of its four sides are conegend which ones are not. Furthermore, the
handshake message sent and received, containsftimmation as to from which of the four
sides it was sent out from. Also, for each inconmmgssage, the module knows through which of
its four sides it came in from. Combining these inimrmation, a module can correctly identify
itself as to one of 625 possible configurationsoiild be in, based on what is connected to each
of its four connectors. This type of mapping idexdlas level-0 mapping, as it is based on how a
module is connected [directly] to utmost four oth&vots. Each robot is assigned a module type
which is calculated in the following way,

L R F B Possibility | Value
[[| [| [| Open | 0
MSB LSB Back 1
Front 2
Right 3
Left 4
Table 3a: Module type data field Table Gbnnector Status Value

Each side can be either open or connected to otteedbur possible sides of another module,
making it5* (625) different possible configurations that a mleccould be in at any given point.

The module type, for each module, is encoded a®k¢e bit value, as seen in table 3a, where in
three bits are used to encode the connection stdtesich of the four connectors. Table 3b

15

contains a list of values each three bit segmemtcéd based on what each of the four connector
is connected to. So for example if a module’s #&ft right connectors are connected to front
connectors of two other modules [module R2 as seefgure 2], with its front and back
connectors open, then its module type is calculagéxplained in table 4b, and will hold the
value ‘1152’. Front connector of modules R1 andaR& connected to left and right connector,
respectively, of module R2, and the rest of thedloonnectors on each of these two modules are
open. So the module type of R1 and R3 is calculébetle ‘32’ and ‘24’ respectively, as

explained in the table 4a and 4c respectively.

Figure 2: A simple three module configuration

o

L F F
O R1 ¢kt R2 RfE F R3 B
R E L
© © ©
R1 =32 Table 4a
L R
0 0 0|0 |O 0 0
MSB LSB
R2 =1152 Table 4b
L R
0 1 o|l11]0 0 0
MSB LSB
R3 =24 Table 4c
L R
0 0 o0 |oO 0 0
MSB LSB

Table 4: Module Type explanation for types ‘242*&nd ‘1152’

16

A handshake message frame for Level-0 topology magpmontains the following field,

‘ Message Type ‘ Acknowledgment | Hop Count | Connector ‘
Table 4: Level-0 handshake message frame

» Message Type: - This field is used to differenti@ndshake messages from other
hormone message.

» Acknowledgment: - This field is set to ‘0’ indicagj that the module who has sent out
this message is initiating the handshake procesd. iAis set to ‘1’ indicating that the
handshake message has been acknowledged.

* Hop Count: - Hop count is set to zero and it doesplay a role in Level-0O topology
mapping. It is used for multi level topology mapgin

* Connector: - This field ranges from 1 to 4 indingtifrom which of the four sided the
handshake message was sent from. So if a modutvesca handshake message,
through its left connector, with the connectordiebntaining the value ‘2’, it implies that

this module’s left connector is connected to tlomfiof another module.

Each module has a container [An array of four attaravariables] which stored the status of
each of its four connectors, and a variable to hbkl calculated module type value of the
module. Both these values are initialized to zarthe beginning of the program, indicating that
a module has all of its connectors open. As it makennections and sends and receives
handshake messages it accordingly updates thes stheach of its connectors and the module
type value. For example, a module receiving a haads message through its back connector
containing ‘4’ in the “Connector” field will updatéhe back connector value to ‘4’. The module
type of a module is calculated by doing a bitwide @peration between the module type value

and the connector value of each of the four cormmean the following way,
Step 1: Module Type = Module Type OR (Back Connett®®)
Step 2: Module Type = Module Type OR (Front Conoettg?!)
Step 3: Module Type = Module Type OR (Right Connett8?)

Step 4: Module Type = Module Type OR (Left Conneét83)

17

And at the end of step 4, Module Type variable wél updated with the correct module type
based on the connection information. Module Typgade can contain a value ranging between
O [If all the four connectors are open] and 2340a[i the four connectors are connect to left
connectors of another module], but there are o25/\&lid values that the Module Type variable
can contain. A simple check on the value in then@mtor field of an incoming handshake

message would make sure the Module Type valueriecaity calculated.

This way of encoding the connection information aattulating module type for differentiating
between modules based on topological location idckqueasy, effective, reliable,
computationally economical and utilizes a small antaf memory. But it is insufficient when
the complexity of the controller increases asdatudes control algorithm for more than one kind
of organism, or when the number of modules in agaoism grows as the structure of the

organism becomes more and more complex. Considdollowing example,

R
O (1 BE—BF C2 BF—BF C3 BF—FF C4 B
L L L L

Figure 3: Topology of a caterpillar organism

lo

':
o. 8§87 gro
5
F
B
F
O| Sﬁ RO—
B
R
lo lo B lo lo
R R L L
o §1 BF—Bf S2 BF—BF S3 BB Bz S4 rFE—FHs S5 2
L L L R R
[0 [© [© [© ©

Figure 4: Topology of a Scorpion organism

18

Figure 3 represents the configuration of a catirpdrganism, and figure 4 that of a scorpion
organism. Module ‘C1’ of caterpillar organism anddules ‘S1’, ‘S5’ and ‘S7’, of the scorpion
organism, are all of module type ‘2’ since eaclih@m have their back connector connected to
the front connector of another module, and theag#te connectors are open. Although they are
of the same module type, based on how they areectenh to other modules directly, they need
to perform different local actions to produce thamrect global action of the organism they
belong to. In some case module ‘C1’ performs thmesaction that its parent module ‘C2’
performs and other wise module ‘C1’ initiates tleerhone flow by generating the locomotion
hormone. Whereas module ‘S1’ and ‘S5’, from thergiom organism, rotate their hinge motors
alternatively between +0.75 and -0.75 radians arteptes locomotion hormone. And module
‘S7’ does not rotate its hinge motors, but congyastans for obstacle using distance sensors. So
to correctly identify if a module of type ‘2’ belga to the caterpillar organism or if it is one of
the two front end modules or the tail module in sterpion organism, we need to extend the
topology mapping to identify how each module isroeet to other modules that it is not directly
connected to, but which are a part of the samensga What we have seen until now can be
called as a Level-0 topology mapping. A Level-1 piag would be, how a module is connected
to another module which is exactly one module’sagise away from it. Example for modules
that are one modules distance away from each aitegrmodules ‘C1’ and ‘C3’, and modules
‘C2" and ‘C4’ in the caterpillar organism in figu@ Similarly modules ‘S6’ and ‘S2’, in the
scorpion configuration in figure 4, are one moduletance away from each other, and modules
‘S7’ and ‘'S4’ are two modules distance away froraheather. Multi level topology mapping can

be extend to any number, provided there is sufftaeemory to store the information.

| have implemented multi level mapping by propagatihe handshake message a module
receives from one of its connected modules to #ikeloconnected modules, by adding the

connector information of its own to the messagmé&aConsider the following example,

19

F
-9 R1 =[S
B
F
o 5 o
R F L
_ o R4 B—B RS gB Ry R2 o
L B R
0 R 0
E
R
—OF R3 BO_
L

Figure 5: A five module configuration for explaigitevel-1 topology mapping.

In the above figure 5, each of the modules ‘R12RR3’ and ‘R4’ has module ‘R5’ at level-0
and each other at level-1 distance. Whereas mdRiehas the remaining four modules at
level-0 and none at level-1 distance. To implemerel-1 mapping, for every message that
module ‘R5’ receives, it appends the message frantle the connector through which it
received this message from, increments the hoptdmupne, and sends it out to the remaining
three modules. For example, when ‘R5’ receives radblaake message from ‘R4’ the message

frame contains the following data,

Message Type Acknowledgment | Hop Count | Connector
Handshake Message lor0 0 Back
Table 5: Level-0 handshake message frame.

When this message is appended and retransmitteddale ‘R2’ from ‘R5’, the message frame

contains the following data,

Message Type Acknowledgment | Hop Count | Connector
Handshake Message 0 1 Left | Back
Table 6: Level-1 handshake message

20

As you can see above, the hop count is increaséd itwicating that it is a level-1 handshake
message, and the connector field now contains ’;Left addition to ‘Back’, which can be
decoded as ‘My back connector is connected toifie connector of a module [I know this by
level-0 handshake message] whose left connectmneected to the back connector of another

module’.

| have implemented multi level topology mapping ibyroducing a four way linked list for
storing the connector and connected module infaomatat various distances in the network.
The structure of the linked list contains four cector variables, for holding the connector
information of each of the four connectors of a mledand four address variables for holding
the address of four other linked list, each represg a connected module. Each module starts
off with a single node in its memory, with all teeght variables initialized to zero during the
beginning of the program. As the module makes cotmoes, sends and receives handshake
message, at different level, it according popul@tesirtual map of the topology, and the linked
list grows in size. Although each module could ptitdly know how it is connected to each
other module in the entire network, it may not éguired to know the same in all situations. For
instance, a caterpillar configuration, with ten mied, would need up to a level-8 mapping for
each modules to know how it is connected to evéingromodule in the network. But this may
not be required, so a simple check on the hop coliat received handshake message, before
propagating it, can restrict the mapping to anyeleV have used up to a level-2 mapping for

correctly identifying all the different module typ@ the three organisms.

The multi level topology mapping, which | have iraienter, is dynamic in nature, as it build up
the virtual map of the topology, by creating nod#isjing runtime. A module can be connected
to utmost four other modules at level-0, twelve oled at level-1, thirty six modules at level-2,

and so on. So the maximum number of modules a reasulld be connected to at a certain level

‘n’ can be formulated as,

Max. no. of modules at level-n i, 4(3i) (1)

Even though there could be a maximum of 52 modatemected to a module at a distance of
level-2, topology mapping at this level would netjuire the same number nodes to be created in

the linked list that resides as a virtual map onaalule’s memory. One node is created for every

21

connected module on receiving a handshake mesSagfar instance, implementing a level-2
topology mapping on a module, that is part of aemgaliar configuration, which has three
modules connected towards its back and three droitg, then it will only have seven nodes in
the linked list based topology map, three on eatd and one node representing itself.

Another important feature of the topology mappingoathm that | have developed involves
correctly updating the connection status when an@are modules gets disconnected or added
to the network, during runtime. At level-0, eachdule sends out a handshake message every
few execution cycle, through all the four connestarrespective of whether it's currently
connected to another module or now. This makes taewhen one of the previously open
connectors, of a module, gets connected to anetivglule, during run time, it gets correctly
identified and the module type gets updates aceglyli Also, after sending out a handshake
message, a module waits for a certain amount & before resetting the connector status to ‘0’
[which indicates that the connector is open], itldes not receive back an acknowledgement
message through that connector. Also, when a madoiteviously occupied connector becomes
open, it sends out a level-1 hand shake messaagjedbits other connected modules, informing
about the change on one of its connector, andaime gets propagated throughout the network.
For instance when modules ‘R5’ and ‘R2’ [from figus] gets disconnected, module ‘R5’ sends
out a level-1 handshake message to the remainimg tmodules. The following shows the

message frame sent out from module ‘R5’ to modei&,*

Message Type Acknowledgment | Hop Count | Connector
Handshake Message 0 1 Right | Open

Table 7: Level-1 handshake message informing logiognnection.

The above message, when received by module ‘R4dewmoded as, ‘My back connector is
connected to the left connector of a module [whglknown by level-0 handshake message]
whose right connector is now open’. Accordingly,dule ‘R4’ deletes the node representing the
module ‘R2’ from the linked list network in its memy and changes the connector variable,
representing the right connector in the node whigbresents module ‘R5’, from ‘Back’ to

‘Open’. The same is done in modules ‘R1’ and ‘R8Wweell..

Going back to the caterpillar and scorpion exameiglained on page [?7?], where in both the

organisms had modules of common module types, baséelvel-0 mapping, it is now possible,

22

with the extended topology mapping, to correctlstidguish between these modules based on

how they are connected to other modules whichvemariodule’s distance away.

o
R R R R
9 (1 Br C2 B Ble (C3 s C4 B
L L L L
[O [[
Figure 6: Topology of a caterpillar organism
o
F
~o 87 R
B
F
B
F
_ 0 S6 RO—
B
[
|O |O B ‘O |O
I3 53 R L L
Y S1 S2 eE—BrF S3 BE—Es S4 5 S5 F
L L L R R
E [0 o [[

Figure 7: Topology of a Scorpion organism

Modules ‘C1’, ‘'S1’, ‘S5’ and ‘S7’, are all of modalltype ‘2’ based on level-0 mapping. But
consider how each one of them is connect to modhlgisare two modules away from them.

Module ‘C1’ has only one module, ‘C4’, that is &vél-2 and it is connected to it in the

following way
» CltoC4:{(B, F), (B, F), (B, F)}

Modules ‘S1’, ‘'S5’ and ‘S7’ have two modules eattgt are at level-2, and following is how

they are connected,

» Slto S4:{(B, F), (B, F), (B, B)}

23

» Sl1to S6:{(B, F), (B,F), (R, B)}

» S5to S2: {(B, F), (B, B), (F, B)}
» S5to S6: {(B, F), (B, B), (R, B)}

» S7to S2:{(B, F), (B, R), (F, B)}
» S7toS4:{(B,F), (B,R), (B, B)}

Each of the module type ‘2° module is connectededdntly at level-2, and can be correctly
discriminated using a level-2 topology mappingttsat they can perform the correct local action

based on the organism they are a part of and lmas#tkir location in the topology.

2.4 Locomotion:
Locomotion in modular robots is achieved by coeatiéd local action of individual module that

translates into a global action, resulting in theomotion of the robot organism. Each module
has one degree of freedom, and the robot body demp of two ‘U’ shaped segments connected
together as shown in figure 8, with a motor in demter. The two segments are connected
together with a hinge allowing each segment to gwelative to the other. The rotation of the
motor causes both the body segments to swing dpwn based on the direction of the rotation.
Each module also has a pair of screw driver whaslseen in figure 8. Rotating both the wheels
forward, moves the module forward, rotating thererse makes it move backward, rotating one
of them forward and the other backward makes théuleomove sideways on one direction, and
alternating the wheel rotation makes it move sidewan the other direction. So this wheel
mechanism gives each module the freedom to movallifour directions. The design and
development of the real modules and simulated nsodélthe modules are the work of
researchers working under the SYMBRION projechatIPR lab, Karlsruhe, Germany.

24

Screw Driver Wheels

Figure 9: Side view of the module [Source: IPR]

2.4.1 Caterpillar:
Modules in the caterpillar configuration are cocted serially one behind the other, with each

module’s back connector connected to the front eotor of a module behind it, and its front

25

connector connected to the back connector of a raaddront of it. Rotating the hinge motor of
the module by ‘+45’ degrees makes the two body segsnswing upwards making it lift the two
connected modules. And by rotating the hinge mdigrs45’ degrees, makes the two segments
swing downwards pushing the two connected modutesdards along with it. By rotating the
hinge motor, of each module one after the otheerratively between ‘+45’ and ‘-45’ degrees
every ‘n’ time steps produces a sine wave, as seégure 10, which propagates the organism

forward.

Figure 10: Sine wave seen in caterpillar gait.

The value ‘n’, i.e. the number of time steps betwesich the rotation of the motor is alternated,
determines the frequency of the sine wave. If thieies of ‘n’ is too small then the frequency of
the sine wave increases, but there is no significhange in the speed of motion as the organism
takes faster but smaller steps, and the motiomgaeh frequency is not very smooth. Making the
value of ‘n’ too big creates very big sine wave mgkthe organism unstable, as it can topple
towards its side. Alternating the rotation betwegery four steps produces a smooth, stable and

fast locomotion.

26

To achieve the sine wave gait, the alternating éningptor rotation of modules should happen
one module after the another, i.e. if there are fmodules in a caterpillar organism, with the first
module on the rightmost side and the fifth one loa leftmost side, then the following gait
should be followed,

Time Motor Angle
Step Module [Degreesg]
1 Module 1 45
2 Module 2 45
3 Module 3 45
4 Module 4 45
s Module 5 45
Module 1 -45
Module 2 -45
7 Module 3 -45
8 Module 4 -45
Module 5 -45
2 Module 1 45

Table 8: Caterpillar locomotion gait for organitength of five modules

If all the modules rotate to ‘+45’ degrees at tinstftime step and to ‘-45’ degrees at the fourth
time step then it does not produce the desiredtsedihe force gets transferred from left to right,
without the organism moving anywhere.

In the caterpillar gait, the end from where theatioh start on the first time step, produces a
wave that move in the direction of the other emd] #he organism moves in the direction of this
wave. That is, if the rightmost module start th&ation, then the organism moves from right to
left and if the rotation starts with the left maabdule, then the organism moves from left to

right.

To produce the caterpillar gait, using Digital Hame Method, a locomotion hormone has to be
diffused from module to module which contains thst Ihinge motor rotation information of the
module which sends out the hormone message. Thisamareceiving a hormone, the receiving
module would perform the same action as its paradule and sends out a hormone to its child
module containing its hinge motor’s current angleis flow of hormone from module to module
produces the sine wave and propagates the orgdarsrard. This way of hormone generation

and diffusion involves one module never receiving@motion hormone and one module never

27

having to diffuse a locomotion hormone. In the gat&r configuration, the module on the
extreme right, which has its front connector come@do the back connector of the module in
front of it, and rest of its connectors open, israidule type ‘8’, the module on the extreme left,
which has its back connector connect to the frdrd module behind it, is of module type ‘2’,
and the rest of the modules are of type ‘10’. Dejrggnupon which direction the organism needs
to move, the hormone generation gets initiated ftbenmodule on the opposite direction. If the
organism need to travel from left to right, thee thodule on the extreme left [The one whose
module type is ‘2’] starts the hormone diffusiomdaif the organism needs to move in the
opposite direction then the hormone diffusion isiafized be the module on the other end [The
one whose module type is ‘8’]. So the other modulles ones in between which are of module
type ‘10’, on receiving the locomotion hormone freame side, acts on the hormone and diffuse
it through the other side. This way it does notteratfor the modules in between, as to which
direction they need to move. The end modules catigtaefer to the inter direction variable,
depending on which, the one responsible startdoit@motion hormone diffusion. The module
that starts hormone diffusion, does not dependngnirecoming hormone to take its local action
of rotating its hinge motors, it oscillates its ¢g@nmotors between ‘+45’ and ‘-45’ degrees, every
‘n’ time steps, which is specified in the algorithm

To make the caterpillar organism turn around asaves, one of the modules in the center of the
organism is pitched 90 degrees towards left, awshio figure 11.

Figure 11: Caterpillar organism with the center miecitched 90 degrees towards left.

28

By rotating the hinge motor of the pitched modueabpositive degree, for a short bust of time
[one time step], and getting it back to zero degr@muld slightly tilt the organism towards the
left [i.e. if the organism is moving from right teft] as it navigates. Repeating this process more
number of times makes the turn sharper. Also, theumt of positive rotation determines the
sharpness of the turn. Rotating the hinge motoa Imggative degree makes the organism turn

right.

The hinge motor of the pitched module has to stageso degrees, while moving forward or
reverse, for the organism to move on a straight.[f@ this module, on receiving a locomotion
hormone, should pass it on to the next module witladtering the message and without taking
any action. A module is correctly identified asrgepitched by constantly reading the tilt sensor

of all the modules.

The turning of the caterpillar organism using thehged module is controlled by diffusing a
‘found obstacle’ hormone, which is designated tinezi a pitched module or the locomotion
initiating module. On receiving such a hormone, gitehed module rotates its hinge motor
according to turn the organism either left or righéised on the data contained in the ‘found
obstacle’ hormone, which tells specifies which dite obstacle was found. The ‘found obstacle’
hormone is generated by the end module which ighetocomotion hormone generator. That
is, if the organism is moving from right to lefhen the left most module will generate the
obstacle hormone and diffuse it through its baakneator [Its only connector that has a module
connected to it]. This hormone gets passed on fromdule to module, until it reached the
pitched module, which is designated to react tchshiermones by rotating its hinge angle
accordingly. After reacting to an obstacle hormotine, pitched module does not diffuse the
hormone any further. If the caterpillar configuoatidoes not have a pitched module, with all the
modules up straight, then the only other way toichan obstacle is to move in the reverse
direction. So when the end module generates aradbshormone, it gets passed on until it
reaches the other end of the configuration [Thedwoation hormone generating module]. On
receiving such a hormone, the locomotion initiatimgpdule, changes its internal direction
variable, and generates and diffuses a ‘directimenge’ hormone, which contains its updated
value of the direction variable, and stops diffgsthe locomotion hormone [Since its internal

direction variable has now changed]. On receivirBieection Change’ hormone, each module

29

will change its direction variable and diffuse theame. When this hormone reaches the end of
configuration [To the module that found an obstaalid initiated the obstacle hormone], the end
module makes change to its internal direction Wéeiawhich makes it the locomotion initiating
module, so it starts generating locomotion hormaeviech results in the organism moving in the

opposite direction.

242 'V
Connecting the open front connector of one enal @dterpillar organism to the left connector of

the end module of another caterpillar organismtesea V' organism [Figure 12a and 12b],
which is an evolved version of the caterpillar arigan.

Left-End Module

Right-End Module

"

Center Module
w

5y Right sice

Figure 12a: ‘V’ organism motion direction Figure 12b: *V’ organism configuration

By generating a sine wave which travels from the &mds of the ‘V’ towards the center of the
‘V’ creates a force vector that moves the organisrthe direction diagonal to the two sides of
the organism, towards the region the center mogulpointing to [Towards the black arrow as
shown in figure 12a]. By generating a sine wave #tarts at the center of the ‘V’ and moves
towards the ends of the ‘V’, makes the organism enavhe opposite direction [Towards the red
arrow in figure 12a]. Unlike in the caterpillar @rmgsm, it is possible to make the V'’ organism
turn around without having to pitch any module toigathe side. While moving forward,
making one side of the ‘v’ organism stop reactiaghe locomotion hormone would make the
organism rotate on its axis on towards that si@e fi while moving forward, the left side of the
organism were to stop generating the sine waveaitide modules on this side stay at a constant

30

angle, with only module on the right side creatthg sine wave, then this would make the
organism rotate on its own axis towards left. Sarag, stopping the right side while the left side

pushes forward, makes the organism rotate towaelgght side.

The two end modules in this organism are of modyte ‘8’, the center module is of type
‘1026’ and the rest of the modules are of type ‘a@d ‘9’, similar to that of the non-end
modules in the caterpillar configuration. So theolmotion hormone generation, diffusion and
reaction is very similar to that of the caterpikaganism. For the organism to move forward, the
two end modules initiate the locomotion by indepeEnity generating the locomotion hormone
and diffusing it. The rest of the modules, exclgdthe centre module, react to the locomotion
hormone by rotating their hinge motor accordinglg.[between +45 and -45 degrees], and by
diffusing the locomotion hormone to their child nutel For the organism to move in reverse
direction, the center module initiates the locomotby generating and diffusing the locomotion
hormone, which creates two sine waves starting fileencenter and moving away towards the

ends of the ‘V’ organism.

Unlike forward and reverse motion mechanism, whishcommon in caterpillar and ‘V’
organisms, the mechanism for rotating the vV’ oigamis different from that of the caterpillar
organism. While moving forward, the centre modwars for obstacles on its two sides and on
finding an obstacle through its right side sensdri¢h indicates that the obstacle is on the right
side of the organism], it generates and diffus&tiraction change’ hormone, without changing
its own direction variable, through its left contwc[the side which holds together the left
segment of the organism]. This propagates till ¢hd of that side, on the way changing the
direction variable of all the modules. This regultthe left section of the organism becoming
inactive, while the right side still producing teme wave, which results in the organism rotating
towards left on its own axis. Similarly on findirzgn obstacle on its front side [which indicates
that the obstacle is on the left side of the orgraihi the center module, sends a direction change
hormone through its back connector [the side wliolds together the right segment of the
organism], and this results in the right sectiocdmeing inactive which rotates the organism

towards the right side.

When the organism is moving in reverse directioa, when the hormone is generated and

diffused by the center module, the two end modatds/ely scan for obstacles. When either of

31

the end modules picks up an obstacle, they genarataliffuse an ‘Obstacle Found’ hormone,
which gets diffused from module to module untilréiaches the center module. If the center
module receives two obstacle found hormones, ocdle tam the two sides, within a short fixed
duration of time, then the center module makesamgé to its internal direction variable, stops
generating locomotion hormone, generates and é$fasdirection change hormone through both
its connectors, which gives the two end modulesptinglege to generate locomotion hormone,
and the organism starts to move in the opposiection. When the center module receives an
obstacle found hormone from one of its side, lletigh its left connector, indicating that there
is an obstacle on the left side, it generates affidsds a direction change hormone through its
back connector only. Also it does not make a chdadges own internal direction variable, but it
stops diffusing the locomotion hormone throughltbek side. On receiving the direction change
hormone, the right end connector starts to genenadediffuse locomotion hormone. Now with
the left segment of the organism, producing a sua@e which propagates from the center,
outwards towards the left-end module, and the rgglggment of the organism, producing a sine
wave that starts from the right end module, propagainwards towards the center of the
module, the organism starts to rotate towards de&fbjding the obstacle. Then, after a fixed short
duration, since the center module generated arfdsdid the direction change hormone, it
generates and diffuses another direction changmdre, through its right connector, which
makes the organism go back to the reverse motibis dontinues until the obstacle has been
completely avoided. Similarly, to rotate right, fimding an obstacle on the right, while moving
in reverse direction, the center module generates diffuses the direction change hormone
through its left connector, making the left sectggnerate the forward moving sine wave for

rotating the organism towards right.

2.4.3 Scorpio
The scorpion organism is made up of fixed numbenoflules, seven in all. A head module, two

tail modules and four arm modules, as explainethen figure 13. Following table gives the
module type, based on level-0 mapping, of each@teven modules of the scorpion organism,

32

Module Name Module Type
Head 73
Right Inner Arm 10
Right Outer Arm 2
Left Inner Arm 9
Left Outer Arm 2
Inner Tail 11
Outer Talil 2

Table 9: Module type of scorpion organism

Modules inner left and right arm are pitched 90rdeg, which makes them push the two
connected modules forward, when the hinge mot@saated by a positive angle, and push the
connected modules backward when the motors areedoby a negative angle.

Outer Tail

Inner Right Arm Inner Left Arm
Outer Right Outer Left Arm

Figure 13: Scorpion configuration and modules.

The outer left and right arm modules rotate theigl motor, alternating between a positive and
negative angles, which make the arm lift up anchpdswn into the ground, which is required

for performing the butterfly gait. The locomotiomigperformed by the scorpion organism is

33

similar to that of butterfly stroke in swimming. @Horward motion in scorpion organism is

attained by performing the following steps,

i. Push both the arms up by rotating hinge motor ef tiko outer arm modules by a
positive angle of ‘0.75’ radians.
ii. Move both the arms forward by rotating the hingaganof the two inner arm modules by
‘0.75’ radians.
iii. Push down both the arms by rotating the hinge maitdihe two outer arm modules by a
negative angle of *-0.75’ radians.
iv. ~ Now move both the arms backwards by rotating thegdnimotor of the two inner

modules by *-0.75’ radians. This would pull theiemnbrganism forward.

Reverse motion in scorpion organism can be attauyesiapping step (ii) and step (iv) above.
That is, the arm gets lifted up, then the arm swihgckwards, in the third step, the arm gets
pushed down, making contact with the ground anthénfourth step, the arm swings forward
pushing the organism backwards. Rotation of therpsoo organism can be achieved by
performing the forward motion action by one arm aederse motion action by the other. The
locomotion of the organism is achieved by coordidadction of the four arm modules, and the
remaining three modules, head and two tail modwulesjot contribute to locomotion. Also, the

propulsion of the entire organism is the resulthef actuation of the two inner arm modules.

Locomotion hormone, in the scorpion organism, isegated and diffused by the head module.
The hormone message contains the hinge motor énbieh is always ‘0’ for the head module]

and the time step, which alternates between ‘1’ ‘@dThis message is diffused to both the

inner arm modules and inner tail module. The taddoie is a dead node and so ignores this
hormone. The inner arm modules do not react tohbrsnone, but only diffuse the same to their
respective outer arm modules. The outer arm moddiggending on the time step either rotates
the hinge motor to ‘+0.75" radians or to ‘-0.75'drans, and then generates a locomotion
hormone, containing their current hinge motor angdlich gets diffused to their respective

inner arm modules. On receiving the locomotion rmmenfrom the outer arm modules, the inner
arm modules would either rotate their hinge motorshe same angle as their respective outer
arm modules, or to (received angle * (-1)) radifires towards the opposite direction], based on

what the internal direction variable reads. If theection variable reads ‘forward’ then the inner

34

arm module will rotate to the same angle as iteratm module, else if the direction is reverse,
then it rotates in the opposite direction, as @rpldin the four step butterfly stroke gait, above.
Then the inner arm modules diffuse the hormonén¢éohtead module. The head module would
wait until it receives a hormone message from edche inner arm modules before it generates
the next set of locomotion hormone. This way, lootom hormone, in the scorpion

configuration, flows to and fro starting from thead module, out towards the outer arm modules

and back to the head module.

To make this organism move in reverse directioa,dinection variable of the inner arm modules
should be changed to ‘reverse’, which makes thesasming forward, while the outer arm

modules are pressed against the ground, which pukbBerganism backwards.

To make the scorpion organism rotate right, a isacchange hormone, changing the direction
variable from ‘forward’ to ‘reverse’, should be geated targeted at the inner right arm module,
on receiving which, the right arm would start tespuackwards while the left arm continues to
pull forward, this would make the organism rotabevards its right. Similarly to make the
organism rotate left, a direction change hormormikhbe generated, which would change the
direction variable of the inner left arm from ‘foand’ to ‘reverse’, which would make the left

arm push backwards and the right arm pull forwardking the organism rotate left.

2.5 Obstacle Avoidance:
Each module is attached with an IR distance seasoeach of the four sides. Internally, all

modules scan all the distance sensors, which atheside of an open connector, once every
execution cycle. Distance sensors only on thosessuwlith an open connector are scanned
because the sensors on the side which has anottirienconnected to it, gets masked by the
connected module, and will always read very lowsgalwhich indicates that there is an obstacle
on that side. Also, the left and right side sensbds module that is that is pitched 90 degrees are
not scanned even if the connectors on that sideopea because one of the sides lie on the
ground and the other face upwards towards therslking the sensor reading from these two

sides useless for obstacle avoidance. This wagaofreng only the potentially useful sensors, by

leaving out the rest, reduces a considerable anmafupntd on the system, since the reading are
taken once ever execution cycle. Furthermore, lhgtanned sensor readings of all the modules

are used in determining if there is an obstacle.iRgtance, in a caterpillar configuration, only

35

the sensor reading from the three open sides afnaloatomotion initiating module is used to
determine if there is an obstacle in front.

Determining if there is an obstacle or not by regdiensor values, in these organisms, is not as
straight forward as it is on a wheeled platform weh@ you set a lower threshold, and scan the
distance sensor constantly until the value dropendo this threshold value, which indicates that
there is an obstacle. Consider the caterpillaamiggn moving from right to left, the sensor on
the front side of the module on the extreme lefth[pid is the non-locomotion initiating end
module] reads out distance value ranging betweamd 128 ['0’ indicating that there is an
obstacle right in front of the sensor, and ‘12&ligating that there is no obstacle in the vicinity]
as this side touches the ground and faces upwawdsrds the sky once every complete sine

wave, the following figure shows both the scenario.

Figure 14: The front side of the extreme left meddlihe one circled] on the left frame is almost
parallel to the ground. The same side of the sawdute is facing upwards on the right frame.

The same is the case with the two end moduleseir\thorganism. Due to this, determining if
there is an obstacle or not by directly readingseffisor values will not be possible. So you need
to look at the last few sensor readings to detegnfithere is an obstacle or not. | have a buffer
for each of the four sensors, for storing the ‘laissensor readings. The size of the buffer istset
‘10" after much experimentation. Taking an averafi¢he buffer gives a better estimate as to

whether there is an obstacle or not. The averagdsn® be compared with a lower threshold

36

limit, and this value differs for each side andvestn different organisms, due to the difference

in locomotion gait and difference in local actidneach kind of module type.

2.5.1 Caterpillar
In this organism the non-locomotion initiating méglui.e. the left-end module when the

organism is moving from right to left, and the tighhd module when the organism is moving
from left to right, is responsible to obstacle @arice. This module will scans for obstacles on
all the three sides and generates an ‘obstaclalfdwormone when the sensor readings [Average
of the sensor buffer] go below a set threshold. Tdiestacle found’ hormone contains the
information as to on which side the obstacle wasmdb The obstacle scanning module does the

following,

I. If it finds an obstacle in front of the organistmen it checks if there are any obstacles on
the right, if not then it generates a ‘obstaclendwon left’ hormone, which makes the
center pitched module rotate its hinge motors dhal the organism turns towards the
right side.

ii. If it finds obstacle both on the front and the tiglde, then it checks if there is a obstacle
on the left side, if not then it generates a ‘otistéound on right’ hormone, which makes
the pitched module turn the organism towards left.

iii. If it finds obstacles on all three sides, then éngrates a ‘obstacles found in front’
hormone, which gets diffused until it reaches thieep end of the configuration, on
receiving which the current locomotion initiatingodule will flip its direction variable
[from forward to reverse if it is currently forwardlse reverse to forward], stops

generating locomotion hormone and generates afitsdg a direction change hormone.

The above is for the left-end module when the asgans moving from right to left. When the
organism is moving in the opposite direction, tlght~end module does the obstacle avoidance
task and refers to its back side distance senscohé¢gck if there is an obstacle in front of the
organism. Also, when it finds an obstacle throughright side sensor [which indicates that the
obstacle is on the left side of the organism],ehgrates a ‘obstacle found on right' hormone,
which makes the pitched module perform the samieradt does when it receives a ‘obstacle
found on right’ hormone, irrespective of which sitie hormone was generated from, which
eventually ends up in the organism turning towaiglst side, avoiding the obstacle on the left.

37

Similarly, it generates a ‘obstacle found on I&ibrmone, when it finds an obstacle through its
[the module’s] left side sensor, which makes thgaaism turn left, avoiding the obstacle on the

right.

The pitched module, on receiving an ‘obstacle foondright’ hormone, will rotate its hinge
motors to an angel of ‘+45 degrees’ and rotateésiek to ‘0’ degrees. This makes the upper half
segment of the organism rotate towards anti-clodewvhile the bottom half segment rotate
clock wise, as shown in the figure 15.

Lower Half Segment
Upper Half Segment S)
Pitched Module

Figure 15: Caterpillar organism in turning motion.

On receiving an ‘obstacle found on left' hormortes pitched module will rotate its hinge motor
to an angel of -45’ degrees and back to ‘0O’ degreenich reverses the clock wise and anti-clock
wise rotation of the upper and lower segments @fdttganism. Even though the two half’s of the
caterpillar organism rotate in opposite directiahg, organism follows the direction of its upper
half segment, making the organism turn towardslefeside when the upper half rotates anti-
clock wise, and turn right when it rotates cloclsevdirection. On receiving an ‘obstacle found

on front’ or ‘obstacle found on back’ hormone, thiched module just diffuses it to its child

38

node without reacting to it, since in those sitmadi the organism need to start moving in the

opposite direction.

252 ‘V
Obstacle avoidance in this configuration is dongh®/two end modules when the organism is

moving in reverse direction, and by the center n®dvhen the organism is moving forward.
When the organism is moving forward, with the twal enodules generating the sine wave,
which moves from the ends towards the center, éiméec module scans for obstacles on the left
side of the organism with the sensor on its frant] scans for obstacles on the right side of the
organism with the sensor on its right. The senstues is again an average of the last 10
readings, but the threshold value for obstacleifferdnt. The threshold values are hand coded
based on observations made during experiments. Wheercenter module finds an obstacle
through its front sensor, which indicates that ¢hisran obstacle on the left side of the organism,
it generates and diffuses a direction change hoemath ‘stop’ as the direction data, through its
back connector. This hormone propagates untilathes the right-end module, on receiving
which the right-end module changes its internakedion variable to ‘stop’ and it stops
generating locomotion hormone. This result in tightr segment of the organism becoming
inactive while the left segment is still pushingviard, which makes the organism rotate right.
The organism would rotate towards right until ibals the obstacle on the left, and once the
obstacle has been avoided, the center module desesadirection change hormone with
‘forward’ as the direction variable, and diffusdge tsame through its back connector, which
results in the right-end module starting to regateethe locomotion hormone, and the organism
starts to more forward again. On finding an obstabtlrough its right connector, the center
module, does the same direction change hormoneragere but this time the hormone gets
diffused through its left connector, which affetk® left segment of the organism, and the

organism rotates left avoiding the obstacle omigst.

When the organism is moving is the reverse diracti@. when the center module is generating
the locomotion hormone, the obstacle avoidanceitadkne by the two end modules, using the
sensor data from the three sensors [back, leftight]. The two end modules are of module type
‘8", the same as the right-end module in the cdtarprganism, so these two modules have the

same control code as the right-end module in thergilar organism, which means that on

39

finding an obstacle through the back sensor, ik$abthere is an obstacle on its right and then
on its left and according generates an appropioéigtacle found’ hormone, just as explained in
the caterpillar obstacle avoidance section. Butaieter module does not consider the actual
content of an ‘obstacle found’ hormones, it onlgats based on which of its two connectors the
obstacle hormone was received from. When the centatule receives an ‘obstacle found’
hormone through its left connector, indicating ttiagre is an obstacle on the left side of the
organism, then it generates and diffuses a dinecatitange hormone with direction variable
‘Forward’ through its back connector, and stopsegating locomotion hormone, making the
organism rotate left. And when the center moduteikes an ‘obstacle found’ hormone through
its back connector, which indicates that therenisobstacle on the right side, it generates and
diffuses a direction change hormone through itsdefnector, making the organism rotate right,
until it avoids the obstacle. If both the end cartoes generates obstacle found hormone within a
short fixed period of time, then the center modilianges its internal directional variable, stops
generating locomotion hormone and generates afusdd a direction change hormone through

both its back and left connectors.

2.5.3 Scorpio
While moving forward, the head module and the twteoarm modules scan for obstacles where

as the outer tail module scans for obstacles wiewtganism is moving in reverse direction.

When the organism is moving forward, the head m®duahns for obstacles in front with its left
distance sensor, and on finding an obstacle it @ésits internal direction variable to ‘Reverse’
and generates and diffuses a direction change hmmith the same direction value, to all the
modules connected to it. On receiving this, both imer arm modules change their internal
direction variable accordingly, which makes the gmosh backwards, making the organism

move in reverse direction.

While moving forward, the two outer arm modulesrstta obstacles using all the three available
sensors [front, right and left], as shown in figdri@ The right sensor of the right outer arm
module and the left sensor of the left outer arnduh® seldom come it to picture, as they both
are behind the arm and the organism is moving fatw@&he remaining two sensors on each
outer arm module scan for obstacles as the armgswiorward and backward. When either of

these modules find an obstacle through any of tineet sensor, it generates and diffuses a

40

‘direction flip’ hormone. On receiving a ‘directidhp’ hormone, a module, if it is of the correct
type, is suppose to multiply its direction variable‘-1' ['1’ represents Forward, ‘-1’ represents
Reverse, and ‘0’ represents Stop], which flips direction variable from forward to reverse or
from reverse to forward. ‘Direction flip’ hormonase targeted only at inner arm modules, in this
configuration, so if any other module type receitléds hormone, then it just increments the hop
count and diffuses it. When an inner arm moduleixess this hormone, it checks the hop count
and reacts to this hormone if and only if the hopnt is greater than or equal to 2, else it only
diffuses the hormone after incrementing the homtou

o

E
o S7 grO_
=]
E
E
E
Left Distance
Right Distance —OL Sﬁ RO Sensor
Sensor
B
[
o o E o lo
R R R L L
A7OF S1 sfE—8F S2 sE—8BF S3 BE—Bs S4 FfE—FHe S5 FOXA
Front Distance L L L E R .
/ |O |O |O |O /|O Front Distance
Sensor
Sensor

Left Distance
Sensor

Right Distance
Sensor

Figure 16: Scorpion configuration.

In the above figure, modules ‘S1’ and ‘S5’ are tlwer arm modules, and modules ‘S2’ and ‘'S4
are the inner arm modules. When module ‘S1’ findsobstacle through one of its sensors, it
generates a ‘Direction Flip’ hormone with hop coequal to zero and diffuses it to module ‘S2’.
Module ‘S2’ being a inner arm module, checks thg bount of this hormone, since it is less
than ‘2’, it increments the hop count to ‘1’ andfaes it to module ‘S3’. On receiving this,

module ‘S3’ increments the hop count to ‘2’ andudés it to its two child modules. When this

hormone reaches module ‘S4’, which being an inner module, checks for the hop count, and

41

since the hop count is now ‘2’ it reacts to thisrhone by flipping its direction variable. Flipping
of the direction variable results in that arm nowslping backwards. With the left arm pushing
backwards and the right arm pushing forward, tlgamism starts to rotate towards left, avoiding
the obstacle on the right. Now, module ‘S1’ waitgiluit has completely avoided the obstacle
and then generates another ‘Direction Flip’ hormowhich once again flips the direction
variable of the module ‘S4’, making the left arm gall forward, which makes the scorpion
organism move forward again. Similarly, on encotntean obstacle, the left outer arm module
‘S5’ generates and diffuse a ‘Direction Flip’ hom&y which gets reacted by the right inner arm
module ‘S2’, which makes the right arm push backisawhile the left arm pulls forward,

resulting in the organism rotating towards it rightoiding the obstacle on its left.

The outer tail module scans for obstacles throtglfront sensor, when the organism is moving
in reverse direction. When it finds an obstaclegenerates and diffuses a direction change
hormone, with direction value ‘Forward’, which pegates throughout the network changing the
direction variable of all the modules, which resuibh both the arms pulling forward, and

resulting in the organism move forward.

42

3 Evaluation and Discussion

3.1 Topology Mapping
Topology mapping, both at level-0 and multi levelprks fine for all the three organisms,

updating the topology map as modules gets addednooved from the network. | was able to
successfully test a level-8 topology map on a pdtar organism made up of 10 modules,
although | have used no more than level-2 topology for implementing the three organisms
discussed in this report. | bisected the caterpdiganism into smaller segments and observed
all the modules correctly updating virtual topolognap accordingly. | was able to confirm the

results by printing out the content and structurne linked list of each module and analyzing it.

3.2 Organism Length
The locomotion and obstacle avoidance algorithmtteri for the caterpillar organism is

completely distributes and works fine irrespectofethe length of the organism, although the
speed of the organism decreases as the lengtle airgfanism becomes smaller, which is due to,
longer organisms take bigger steps compared tdenuaganisms. | was able to test a caterpillar
organism with up to 16 modules [That's the maximuwmnber of connected modules allowed by
the current simulation design] with a pitched meglor rotation, at the"8position. The turning

is not as sharp on a 16 module caterpillar, as with a 10 modules length caterpillar, but the
organism still manages to turn. As the size ofdaeerpillar organism grows, it would probably
be a better idea to have multiple pitched modutedifeerent locations of the configuration to
make the organism turn successfully. Similarlyyadrganism can be of any length, but the two
segments have to be of equal length for the orgatasmove in a straight direction. If one side
is smaller than the other, then the organism Wilkdwards that side, as the bigger side will be
faster and have a greater force vector, than tralanside. The scorpion organism is of a fixed

length and cannot grow is size.

3.3 Locomotion
The locomotion gait for all the three organisms kgawith varying degree of success. The fastest

and the smoothest motion is produced by the cditargrganism without a pitched module in
the center. Although the organism moves very dttaigthis configuration, it cannot turn around
without the pitched module in the center. The qallar configuration with the pitched module

is slightly slower, less smooth, and the organiends to very slightly tilt towards one side. It is

43

slower and less smooth because the pitched modele rabt contribute to the sine wave and its
weight is carried by the other modules around ihdAthe tilt is due to uneven weight
distribution. As you can see in figure 17, the veigf the screw driver wheels on the right
makes the organism tilt slightly towards right,iapushed forward. The turning mechanism, in
this configuration, is not as sharp and accuratepased to the other two organisms. Trying to
make it turn sharply, by increasing the angle dation of the pitched module make the
organism very unstable and it becomes very vulerabtopple towards the side. The speed and
smoothness of the locomotion in caterpillar gaginse to suffer heavily when the pitched module
is placed anywhere else than around about the eatios of the organism. Also, having more
than one pitched module makes the motion very biestailts heavily towards one side

randomly, and the speed reduces drastically.

Figure 17: Top view of a caterpillar organism wiitle center pitched module.

The locomotion speed of the V' organism is nofast as the caterpillar’s, the motion is fairly
smooth and it moves fairly on a straight path, betien moving forward and reverse. The
rotation in the V' organism is faster, sharper amere accurate compared to that of the
caterpillar organism.

44

Scorpion organism has the slowest locomotion spemdpared to the other two organisms.
Although the gait is quit smooth, while moving faxd and reverse, there is some deviation
some times. The reason for slow speed is that aereseven modules in this configuration but
there are only two modules [The inner arm moduies{ pull the weight of the entire organism. |
have tested the same locomotion gait by dethatchHiegtwo tail modules, and there is a
significant increase in the speed and it also mawes fairly straight path. Initially when |
started experimenting with the scorpion configunatil wanted to have a pitched module on the
inner tail module, such that the turning mechanafnthe organism could be controlled by its
tail, and so | stuck with this configuration evérugh it has a slow speed. The turning in this
organism is very sharp and accurate as it makesrgjaism rotate on its own axis, even though

it is quit slowly in speed.

3.4 Obstacle Avoidance
Obstacle avoidance works best in the caterpillgamisms. Caterpillar organism can perform

wall following as well as avoid any obstacle on jtath while moving forward/reverse and
continue moving in the same direction. Due to time svave gait and not very sharp turning,
obstacle avoidance using distance sensors almestsséke obstacle avoidance using bump

sensors, since the organism need to go very aodetobstacle before it realizes it's a obstacle.

Obstacle avoidance works fairly well in 'V’ orgamis It cannot perform wall following in all
situations. Successful wall following depends oa #mgle which the organism approaches the
wall. While moving forward, if it hits the wall hdaon perpendicularly, it pushes towards the
wall until it turns towards one of the sides adiivg the distance sensor on that side, which
makes the organism move away from the wall. Sityilaf it approaches the wall
perpendicularly while moving in reverse directidrsimultaneously activates distance sensor on
both the end modules, making the organism movehen dpposite direction. Otherwise, it
performs the wall following, but as it approachies other wall perpendicular to the current wall

it is following, and hits that wall head on, it dates away from the wall.

Obstacle avoidance in scorpion organism in muctebebmpared to the V'’ organism but it is
not as efficient as the caterpillar organism. Wheoving forward it can avoid obstacles and
continue to move forward if the obstacle is pickgdby either of the outer arm modules. When

an obstacle is picked up by the head module, rieasted to by making the organism move in

45

reverse direction. Just like in V'’ organism, thegée of approach towards the wall decides if the
scorpion organism follows the wall or move awaynirit. When moving in reverse direction, the
only way an obstacle, picked up by the outer tatole, is dealt with is by making the organism

move in forward direction.

3.5 Fault Tolerant
With active topology mapping, a degree of fauletahce is developed in to the system. When

any a module in caterpillar or *V’ organism failkle organism gets bisected at that point and
continues to navigate. A caterpillar organism wiheected into segments of varying lengths,
will resume operating as individual organism. le ti’ configuration, if the two segments were
to be separated by disconnecting the centre mothia, the two segments become separate
caterpillar organisms and start to perform locommtand obstacle avoidance tasks just like a
caterpillar organism. And before starting to operas an individual caterpillar organism, either
when bisected from a single caterpillar or wherasaed into two caterpillars from an existing
‘v’ organism, the locomotion initiating hormone, wh is decided based on the interval
direction variable, will generate and diffuse a $ee hormone, on receiving which each module
will reset its hinge motor to zero degrees, retugnihe organism to its initial configuration.
Reconnecting two caterpillar organisms to form tige caterpillar and operating as a single
organism, or connecting two caterpillars to formVa organism should be possible, since
topology mapping takes care of both active addithord active deletion of module into the
network, while updating the connector status arahging the module types of the module, but |
am unable to experiment these scenario since thelaion does not have the feature for
connecting two modules during runtime, it only alfodisconnecting modules during runtime.
Disconnecting the scorpion organism’s tail from thain body converts the tail into a two
module long caterpillar organism. Even though tikerecognized the disconnection, changes it
module type accordingly and tries to move forwatdails to do so since it is too small to

produce a wave.

3.6 Discussion
Some improvements that can be made to the curystdms are,

* All the open distance sensors of all the modules @ad every execution cycle,

irrespective of whether it is used or not, whichliags computational resource

46

unwontedly. This is programmed in the lower lewvaid so there is no control at the
higher level to only choose those sensors to be @#ed stored that are used for obstacle
avoidance in a given configuration. This can bermapd by developing an atom for
scanning the sensor values and storing it, andzingl this atom appropriately and
efficiently in the MDL2e code.

» Currently obstacle avoidance is performed basethersensor value of only a couple of
modules at a time. To extend the obstacle avoiddeature and to make it more
efficient, an organism should make use of all thailable sensors on all the modules.
Consider for example, a moving object [like a rackanother organism] moves towards
the center of a caterpillar organism. For the galtar organism to correctly sense this
object and move away from its path, it would needdtively scan for obstacles with all
its open sensors, and take action accordingly.

* In the scorpion organism, currently only the sessor the outer tail module are used for
scanning for obstacles, when the organism is momngverse direction. This could be
extended to make use of the sensors on the foeedithe outer arm modules, using
which the organism could know on which side thetatie is and according rotate away
avoiding the obstacle, instead of just moving faxvavhen an obstacle is found while

moving in reverse direction.

3.7 Summary
In this project | was able to develop a framewdksed on Digital Hormone Method [DHM], for

developing distributed controller for performingctomotion and obstacle avoidance task in
modular robots. The main idea behind DHM is thataimulti robotic platform, each robot

decides it action based on its topological posjtitsinternal variables and sensor values, and
local communication. As part of the framework, vbaimplemented modules for topology

mapping, local communication [hormone messagesglIsensing and actuation. | was able to
test the same by implementing locomotion and obestagoidance tasks on three different
modular robotic configurations, caterpillar, vV’ @rscorpion organisms. | tested the system by
simulating the configurations on a Delta 3D baskgsjc engine simulator. The development of
the framework part of the project is done in C+hewe as the distributed controllers for testing
the framework was implemented in a high level barasoordination language, called MDL2e.

The results of the experiment, on all the threeanigms, proved that it possible to created

47

distributed controllers using the DHM, which leadgurther investigation on using this method

to create more complex behaviors in modular robmiganisms.

48

4 Bibliography

[1] Kernbach, S., Meister, E., Schlachter, F., Jebens, K., Szymanski, M., Liedke, J., Laneri, D., Winkler,
L., Schmickl, T., Thenius, R., Corradi, P., Ricotti, L.: Symbiotic Robot Organisms: Replicator and
Symbrion Projects. In: PerMIS 08, Gaithersburg, MD, USA. (2008)

[2] Schlachter, F., Meister, E., Kernbach, S., Levi, P.: Evolve-ability of the Robot Platform in the Symbrion
Project. In: Workshop on Pervasive Adaptive Systems, Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, Venice. (2008)

[3] Kernbach, S., Ricaotti, L., Liedke, J., Corradi, P., Rothermel, M.: Study of Macroscopic Morphological
Features of Symbiotic Robotic Organisms. In: IROS08, workshop on selfreconfigurable robots, Nice.
(2008)

[4] Wei-Min Shen, Peter Will, Aram Galstyan, and Cheng-Ming Chuong. Hormone-Inspired Self-
Organization and Distributed Control of Robotic Swarms. Autonomous Robots, 17(1):93-105, July 2004.

[5] Marc Szymanski and Heinz Wdérn, JaMOS - A MDL2e based Operating System for Swarm Micro
Robotics, IEEE Swarm Intelligence Symposium, Yuhui Shi and Marco Dorigo (Ed.), 324-331, 2007

49

